Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1186 | savelij | 1 | /* ieeefloat.c */ |
2 | /*****************************************************************************/ |
||
3 | /* SPDX-License-Identifier: GPL-2.0-only OR GPL-3.0-only */ |
||
4 | /* */ |
||
5 | /* AS */ |
||
6 | /* */ |
||
7 | /* IEEE Floating Point Handling */ |
||
8 | /* */ |
||
9 | /*****************************************************************************/ |
||
10 | |||
11 | #include "stdinc.h" |
||
12 | #include <float.h> |
||
13 | #include <math.h> |
||
14 | #include <errno.h> |
||
15 | #include <string.h> |
||
16 | |||
17 | #include "be_le.h" |
||
18 | #include "as_float.h" |
||
19 | #ifdef HOST_DECFLOAT |
||
20 | # include "decfloat.h" |
||
21 | #endif |
||
22 | #include "ieeefloat.h" |
||
23 | |||
24 | #define DBG_FLOAT 0 |
||
25 | |||
26 | #ifdef IEEEFLOAT_8_DOUBLE |
||
27 | /*!------------------------------------------------------------------------ |
||
28 | * \fn as_float_dissect(as_float_dissect_t *p_dest, as_float_t num) |
||
29 | * \brief dissect float into components - version if as_float_t is IEEE Double |
||
30 | * \param p_dest result buffer |
||
31 | * \param num number to dissect |
||
32 | * ------------------------------------------------------------------------ */ |
||
33 | |||
34 | void as_float_dissect(as_float_dissect_t *p_dest, as_float_t num) |
||
35 | { |
||
36 | Byte buf[8]; |
||
37 | LongWord mant_h, mant_l; |
||
38 | |||
39 | as_float_zero(p_dest); |
||
40 | |||
41 | /* binary representation, little endian: */ |
||
42 | |||
43 | memcpy(buf, &num, 8); |
||
44 | if (HostBigEndian) |
||
45 | QSwap(buf, 8); |
||
46 | |||
47 | #if DBG_FLOAT |
||
48 | fprintf(stdout, "%0.15f\n", num); |
||
49 | #endif |
||
50 | |||
51 | /* (a) Sign is MSB of highest byte: */ |
||
52 | |||
53 | p_dest->negative = !!(buf[7] & 0x80); |
||
54 | |||
55 | /* (b) Exponent is stored in the following 11 bits, with a bias of 1023: */ |
||
56 | |||
57 | p_dest->exponent = (buf[7] & 0x7f); |
||
58 | p_dest->exponent = (p_dest->exponent << 4) | ((buf[6] >> 4) & 15); |
||
59 | switch (p_dest->exponent) |
||
60 | { |
||
61 | case 0: |
||
62 | p_dest->fp_class = AS_FP_SUBNORMAL; |
||
63 | break; |
||
64 | case 2047: |
||
65 | p_dest->fp_class = AS_FP_INFINITE; |
||
66 | break; |
||
67 | default: |
||
68 | p_dest->fp_class = AS_FP_NORMAL; |
||
69 | } |
||
70 | p_dest->exponent -= 1023; |
||
71 | |||
72 | /* (c) Make leading one explicit (if not denormal) */ |
||
73 | |||
74 | as_float_append_mantissa_bits(p_dest, p_dest->fp_class == AS_FP_NORMAL, 1); |
||
75 | |||
76 | /* (d) Extract 52 bits of mantissa: */ |
||
77 | |||
78 | mant_h = buf[6] & 15; |
||
79 | mant_h = (mant_h << 8) | buf[5]; |
||
80 | mant_h = (mant_h << 8) | buf[4]; |
||
81 | as_float_append_mantissa_bits(p_dest, mant_h, 20); |
||
82 | mant_l = buf[3]; |
||
83 | mant_l = (mant_l << 8) | buf[2]; |
||
84 | mant_l = (mant_l << 8) | buf[1]; |
||
85 | mant_l = (mant_l << 8) | buf[0]; |
||
86 | as_float_append_mantissa_bits(p_dest, mant_l, 32); |
||
87 | |||
88 | /* Distinguish NaN and Infinite */ |
||
89 | |||
90 | if ((p_dest->fp_class == AS_FP_INFINITE) |
||
91 | && (mant_h || mant_l)) |
||
92 | p_dest->fp_class = AS_FP_NAN; |
||
93 | #if DBG_FLOAT |
||
94 | as_float_dump(stdout, "0", p_dest); |
||
95 | #endif |
||
96 | } |
||
97 | #endif /* IEEEFLOAT_8_DOUBLE */ |
||
98 | |||
99 | /* x86 80 bit float format is just extended with two or six padding bytes |
||
100 | on i386 resp. x86-64, which can be ignored for dissection: */ |
||
101 | |||
102 | #if (defined IEEEFLOAT_10_10_LONG_DOUBLE) || (defined IEEEFLOAT_10_12_LONG_DOUBLE) || (defined IEEEFLOAT_10_16_LONG_DOUBLE) |
||
103 | /*!------------------------------------------------------------------------ |
||
104 | * \fn as_float_dissect(as_float_dissect_t *p_dest, as_float_t num) |
||
105 | * \brief dissect float into components - version if as_float_t is x86 extended 80 Bit |
||
106 | * \param p_dest result buffer |
||
107 | * \param num number to dissect |
||
108 | * ------------------------------------------------------------------------ */ |
||
109 | |||
110 | void as_float_dissect(as_float_dissect_t *p_dest, as_float_t num) |
||
111 | { |
||
112 | Byte buf[16]; |
||
113 | LongWord mant_h, mant_l; |
||
114 | |||
115 | as_float_zero(p_dest); |
||
116 | |||
117 | /* binary representation, little endian: */ |
||
118 | |||
119 | memcpy(buf, &num, 10); |
||
120 | if (HostBigEndian) |
||
121 | TSwap(buf, 10); |
||
122 | |||
123 | #if DBG_FLOAT |
||
124 | fprintf(stdout, "%0.15Lf\n", num); |
||
125 | #endif |
||
126 | |||
127 | /* (a) Sign is MSB of highest byte: */ |
||
128 | |||
129 | p_dest->negative = !!(buf[9] & 0x80); |
||
130 | |||
131 | /* (b) Exponent is stored in the following 15 bits, with a bias of 16383: |
||
132 | Note special case for denormal numbers, which is due to the |
||
133 | explicit leading mantissa bit: */ |
||
134 | |||
135 | p_dest->exponent = (buf[9] & 0x7f); |
||
136 | p_dest->exponent = (p_dest->exponent << 8) | buf[8]; |
||
137 | switch (p_dest->exponent) |
||
138 | { |
||
139 | case 0: |
||
140 | p_dest->fp_class = AS_FP_SUBNORMAL; |
||
141 | p_dest->exponent = -16382; |
||
142 | break; |
||
143 | case 32767: |
||
144 | p_dest->fp_class = AS_FP_INFINITE; |
||
145 | p_dest->exponent -= 16383; |
||
146 | break; |
||
147 | default: |
||
148 | p_dest->fp_class = AS_FP_NORMAL; |
||
149 | p_dest->exponent -= 16383; |
||
150 | } |
||
151 | |||
152 | /* (c) leading one is *not* implicit */ |
||
153 | |||
154 | /* (d) Extract 64 bits of mantissa: */ |
||
155 | |||
156 | mant_h = buf[7]; |
||
157 | mant_h = (mant_h << 8) | buf[6]; |
||
158 | mant_h = (mant_h << 8) | buf[5]; |
||
159 | mant_h = (mant_h << 8) | buf[4]; |
||
160 | as_float_append_mantissa_bits(p_dest, mant_h, 32); |
||
161 | mant_l = buf[3]; |
||
162 | mant_l = (mant_l << 8) | buf[3]; |
||
163 | mant_l = (mant_l << 8) | buf[2]; |
||
164 | mant_l = (mant_l << 8) | buf[1]; |
||
165 | mant_l = (mant_l << 8) | buf[0]; |
||
166 | as_float_append_mantissa_bits(p_dest, mant_l, 32); |
||
167 | |||
168 | /* Distinguish NaN and Infinite */ |
||
169 | |||
170 | if ((p_dest->fp_class == AS_FP_INFINITE) |
||
171 | && !as_float_mantissa_is_zero_from(p_dest, 1)) |
||
172 | p_dest->fp_class = AS_FP_NAN; |
||
173 | |||
174 | #if DBG_FLOAT |
||
175 | as_float_dump(stdout, "0", p_dest); |
||
176 | #endif |
||
177 | } |
||
178 | #endif /* IEEEFLOAT_10_10_LONG_DOUBLE || IEEEFLOAT_10_12_LONG_DOUBLE || IEEEFLOAT_10_16_LONG_DOUBLE */ |
||
179 | |||
180 | #ifdef IEEEFLOAT_10_2P8_LONG_DOUBLE |
||
181 | /*!------------------------------------------------------------------------ |
||
182 | * \fn as_float_dissect(as_float_dissect_t *p_dest, as_float_t num) |
||
183 | * \brief dissect float into components - version if as_float_t is 68K extended 96/80 Bit |
||
184 | * \param p_dest result buffer |
||
185 | * \param num number to dissect |
||
186 | * ------------------------------------------------------------------------ */ |
||
187 | |||
188 | void as_float_dissect(as_float_dissect_t *p_dest, as_float_t num) |
||
189 | { |
||
190 | Byte buf[12]; |
||
191 | LongWord mant_h, mant_l; |
||
192 | |||
193 | as_float_zero(p_dest); |
||
194 | |||
195 | /* binary representation, big endian: */ |
||
196 | |||
197 | memcpy(buf, &num, 12); |
||
198 | |||
199 | /* (a) Sign is MSB of highest byte: */ |
||
200 | |||
201 | p_dest->negative = !!(buf[0] & 0x80); |
||
202 | |||
203 | /* (b) Exponent is stored in the following 15 bits, with a bias of 16383: |
||
204 | Note special case for denormal numbers, which is due to the |
||
205 | explicit leading mantissa bit: */ |
||
206 | |||
207 | p_dest->exponent = (buf[0] & 0x7f); |
||
208 | p_dest->exponent = (p_dest->exponent << 8) | buf[1]; |
||
209 | switch (p_dest->exponent) |
||
210 | { |
||
211 | case 0: |
||
212 | p_dest->fp_class = AS_FP_SUBNORMAL; |
||
213 | p_dest->exponent = -16382; |
||
214 | break; |
||
215 | case 32767: |
||
216 | p_dest->fp_class = AS_FP_INFINITE; |
||
217 | p_dest->exponent -= 16383; |
||
218 | break; |
||
219 | default: |
||
220 | p_dest->fp_class = AS_FP_NORMAL; |
||
221 | p_dest->exponent -= 16383; |
||
222 | } |
||
223 | |||
224 | /* (c) leading one is *not* implicit */ |
||
225 | |||
226 | /* (d) Extract 64 bits of mantissa: */ |
||
227 | |||
228 | mant_h = buf[4]; |
||
229 | mant_h = (mant_h << 8) | buf[5]; |
||
230 | mant_h = (mant_h << 8) | buf[6]; |
||
231 | mant_h = (mant_h << 8) | buf[7]; |
||
232 | as_float_append_mantissa_bits(p_dest, mant_h, 32); |
||
233 | mant_l = buf[8]; |
||
234 | mant_l = (mant_l << 8) | buf[9]; |
||
235 | mant_l = (mant_l << 8) | buf[10]; |
||
236 | mant_l = (mant_l << 8) | buf[11]; |
||
237 | as_float_append_mantissa_bits(p_dest, mant_l, 32); |
||
238 | |||
239 | /* Distinguish NaN and Infinite */ |
||
240 | |||
241 | if ((p_dest->fp_class == AS_FP_INFINITE) |
||
242 | && !as_float_mantissa_is_zero_from(p_dest, 1)) |
||
243 | p_dest->fp_class = AS_FP_NAN; |
||
244 | } |
||
245 | #endif /* IEEEFLOAT_10_12_LONG_DOUBLE */ |
||
246 | |||
247 | /*!------------------------------------------------------------------------ |
||
248 | * \fn as_float_2_ieee4(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
249 | * \brief convert float to IEEE single (32 bit) float binary representation |
||
250 | * \param inp input number |
||
251 | * \param pDest where to write binary data |
||
252 | * \param NeedsBig req's big endian? |
||
253 | * \return >=0 if conversion was successful, <0 for error |
||
254 | * ------------------------------------------------------------------------ */ |
||
255 | |||
256 | int as_float_2_ieee4(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
257 | { |
||
258 | as_float_dissect_t dissect; |
||
259 | #if (defined IEEEFLOAT_8_DOUBLE) || (defined IEEEFLOAT_10_LONG_DOUBLE) |
||
260 | |||
261 | float tmp; |
||
262 | as_float_dissect(&dissect, inp); |
||
263 | if ((dissect.fp_class != AS_FP_NAN) |
||
264 | && (dissect.fp_class != AS_FP_INFINITE) |
||
265 | && (as_fabs(inp) > FLT_MAX)) |
||
266 | return -E2BIG; |
||
267 | tmp = inp; |
||
268 | memcpy(pDest, &tmp, 4); |
||
269 | if (HostBigEndian != NeedsBig) |
||
270 | DSwap(pDest, 4); |
||
271 | |||
272 | #else |
||
273 | |||
274 | as_float_round_t round_type; |
||
275 | unsigned mask = NeedsBig ? 3 : 0; |
||
276 | |||
277 | /* (1) Dissect IEEE number */ |
||
278 | |||
279 | as_float_dissect(&dissect, inp); |
||
280 | |||
281 | /* Infinity/NaN: */ |
||
282 | |||
283 | if ((dissect.fp_class == AS_FP_NAN) |
||
284 | || (dissect.fp_class == AS_FP_INFINITE)) |
||
285 | { |
||
286 | pDest[3 ^ mask] = (dissect.negative << 7) | 0x7f; |
||
287 | pDest[2 ^ mask] = 0x80; |
||
288 | pDest[1 ^ mask] = |
||
289 | pDest[0 ^ mask] = 0; |
||
290 | |||
291 | /* clone all-ones mantissa for NaN: */ |
||
292 | |||
293 | if (as_float_mantissa_is_allones(&dissect)) |
||
294 | { |
||
295 | pDest[2 ^ mask] |= 0x7f; |
||
296 | pDest[1 ^ mask] |= 0xff; |
||
297 | pDest[0 ^ mask] |= 0xff; |
||
298 | } |
||
299 | |||
300 | /* otherwise clone MSB+LSB of mantissa: */ |
||
301 | |||
302 | else |
||
303 | { |
||
304 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, 1)) |
||
305 | pDest[2 ^ mask] |= 0x40; |
||
306 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, dissect.mantissa_bits - 1)) |
||
307 | pDest[0 ^ mask] |= 0x01; |
||
308 | } |
||
309 | return 2; |
||
310 | } |
||
311 | |||
312 | /* (2) Round to target precision: */ |
||
313 | |||
314 | round_type = as_float_round(&dissect, 24); |
||
315 | |||
316 | /* (3a) Overrange? */ |
||
317 | |||
318 | if (dissect.exponent > 127) |
||
319 | return -E2BIG; |
||
320 | else if ((dissect.exponent == 127) |
||
321 | && as_float_mantissa_is_allones(&dissect) |
||
322 | && (round_type == e_round_down)) |
||
323 | return -E2BIG; |
||
324 | |||
325 | /* (3b) number that is too small may degenerate to 0: */ |
||
326 | |||
327 | while ((dissect.exponent < -127) && !as_float_mantissa_is_zero(&dissect)) |
||
328 | { |
||
329 | dissect.exponent++; |
||
330 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
331 | } |
||
332 | |||
333 | /* numbers too small to represent degenerate to 0 (mantissa was shifted out) */ |
||
334 | |||
335 | if (dissect.exponent < -127) |
||
336 | dissect.exponent = -127; |
||
337 | |||
338 | /* For denormal numbers, exponent is 2^(-126) and not 2^(-127)! |
||
339 | So if we end up with an exponent of 2^(-127), convert |
||
340 | mantissa so it corresponds to 2^(-127): */ |
||
341 | |||
342 | else if (dissect.exponent == -127) |
||
343 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
344 | |||
345 | /* (3c) add bias to exponent */ |
||
346 | |||
347 | dissect.exponent += 127; |
||
348 | |||
349 | /* (3d) store result */ |
||
350 | |||
351 | pDest[3 ^ mask] = (dissect.negative << 7) |
||
352 | | ((dissect.exponent >> 1) & 0x7f); |
||
353 | pDest[2 ^ mask] = ((dissect.exponent & 1) << 7) |
||
354 | | as_float_mantissa_extract(&dissect, 1, 7); |
||
355 | pDest[1 ^ mask] = as_float_mantissa_extract(&dissect, 8, 8); |
||
356 | pDest[0 ^ mask] = as_float_mantissa_extract(&dissect, 16, 8); |
||
357 | |||
358 | #endif |
||
359 | return 4; |
||
360 | } |
||
361 | |||
362 | /*!------------------------------------------------------------------------ |
||
363 | * \fn as_float_2_ieee8(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
364 | * \brief convert float to IEEE double (64 bit) float binary representation |
||
365 | * \param inp input number |
||
366 | * \param pDest where to write binary data |
||
367 | * \param NeedsBig req's big endian? |
||
368 | * \return >=0 if conversion was successful, <0 for error |
||
369 | * ------------------------------------------------------------------------ */ |
||
370 | |||
371 | int as_float_2_ieee8(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
372 | { |
||
373 | as_float_dissect_t dissect; |
||
374 | #if (defined IEEEFLOAT_8_DOUBLE) || (defined IEEEFLOAT_10_LONG_DOUBLE) |
||
375 | |||
376 | double tmp; |
||
377 | as_float_dissect(&dissect, inp); |
||
378 | if ((dissect.fp_class != AS_FP_NAN) |
||
379 | && (dissect.fp_class != AS_FP_INFINITE) |
||
380 | && (as_fabs(inp) > DBL_MAX)) |
||
381 | return -E2BIG; |
||
382 | tmp = inp; |
||
383 | memcpy(pDest, &tmp, 8); |
||
384 | if (HostBigEndian != NeedsBig) |
||
385 | QSwap(pDest, 8); |
||
386 | |||
387 | #else |
||
388 | |||
389 | as_float_round_t round_type; |
||
390 | unsigned mask = NeedsBig ? 7 : 0; |
||
391 | |||
392 | /* (1) Dissect IEEE number */ |
||
393 | |||
394 | as_float_dissect(&dissect, inp); |
||
395 | |||
396 | /* Infinity/NaN: */ |
||
397 | |||
398 | if ((dissect.fp_class == AS_FP_NAN) |
||
399 | || (dissect.fp_class == AS_FP_INFINITE)) |
||
400 | { |
||
401 | pDest[7 ^ mask] = (dissect.negative << 7) | 0x7f; |
||
402 | pDest[6 ^ mask] = 0xf0; |
||
403 | pDest[5 ^ mask] = |
||
404 | pDest[4 ^ mask] = |
||
405 | pDest[3 ^ mask] = |
||
406 | pDest[2 ^ mask] = |
||
407 | pDest[1 ^ mask] = |
||
408 | pDest[0 ^ mask] = 0; |
||
409 | |||
410 | /* clone all-ones mantissa for NaN: */ |
||
411 | |||
412 | if (as_float_mantissa_is_allones(&dissect)) |
||
413 | { |
||
414 | pDest[6 ^ mask] |= 0x0f; |
||
415 | pDest[5 ^ mask] |= 0xff; |
||
416 | pDest[4 ^ mask] |= 0xff; |
||
417 | pDest[3 ^ mask] |= 0xff; |
||
418 | pDest[2 ^ mask] |= 0xff; |
||
419 | pDest[1 ^ mask] |= 0xff; |
||
420 | pDest[0 ^ mask] |= 0xff; |
||
421 | } |
||
422 | |||
423 | /* otherwise clone MSB+LSB of mantissa: */ |
||
424 | |||
425 | else |
||
426 | { |
||
427 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, 1)) |
||
428 | pDest[6 ^ mask] |= 0x08; |
||
429 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, dissect.mantissa_bits - 1)) |
||
430 | pDest[0 ^ mask] |= 0x01; |
||
431 | } |
||
432 | return 2; |
||
433 | } |
||
434 | |||
435 | /* (2) Round to target precision: */ |
||
436 | |||
437 | round_type = as_float_round(&dissect, 53); |
||
438 | |||
439 | /* (3a) Overrange? */ |
||
440 | |||
441 | if (dissect.exponent > 1023) |
||
442 | return -E2BIG; |
||
443 | else if ((dissect.exponent == 1023) |
||
444 | && as_float_mantissa_is_allones(&dissect) |
||
445 | && (round_type == e_round_down)) |
||
446 | return -E2BIG; |
||
447 | |||
448 | /* (3b) number that is too small may degenerate to 0: */ |
||
449 | |||
450 | while ((dissect.exponent < -1023) && !as_float_mantissa_is_zero(&dissect)) |
||
451 | { |
||
452 | dissect.exponent++; |
||
453 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
454 | } |
||
455 | |||
456 | /* TODO: This is needed to get a correct exponent value (0) for 0.0, |
||
457 | if the host format has smaller exponent that IEEE64. |
||
458 | Ultimately, as_float_dissect() should return an exponent |
||
459 | of zero. */ |
||
460 | |||
461 | if (as_float_mantissa_is_zero(&dissect)) |
||
462 | dissect.exponent = -1023; |
||
463 | |||
464 | /* numbers too small to represent degenerate to 0 (mantissa was shifted out) */ |
||
465 | |||
466 | if (dissect.exponent < -1023) |
||
467 | dissect.exponent = -1023; |
||
468 | |||
469 | /* For denormal numbers, exponent is 2^(-1022) and not 2^(-1023)! |
||
470 | So if we end up with an exponent of 2^(-1023), convert |
||
471 | mantissa so it corresponds to 2^(-1023): */ |
||
472 | |||
473 | else if (dissect.exponent == -1023) |
||
474 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
475 | |||
476 | /* (3c) add bias to exponent */ |
||
477 | |||
478 | dissect.exponent += 1023; |
||
479 | |||
480 | /* (3d) store result */ |
||
481 | |||
482 | pDest[7 ^ mask] = (dissect.negative << 7) |
||
483 | | ((dissect.exponent >> 4) & 0x7f); |
||
484 | pDest[6 ^ mask] = ((dissect.exponent & 15) << 4) |
||
485 | | as_float_mantissa_extract(&dissect, 1, 4); |
||
486 | pDest[5 ^ mask] = as_float_mantissa_extract(&dissect, 5, 8); |
||
487 | pDest[4 ^ mask] = as_float_mantissa_extract(&dissect, 13, 8); |
||
488 | pDest[3 ^ mask] = as_float_mantissa_extract(&dissect, 21, 8); |
||
489 | pDest[2 ^ mask] = as_float_mantissa_extract(&dissect, 29, 8); |
||
490 | pDest[1 ^ mask] = as_float_mantissa_extract(&dissect, 37, 8); |
||
491 | pDest[0 ^ mask] = as_float_mantissa_extract(&dissect, 45, 8); |
||
492 | |||
493 | #endif |
||
494 | return 8; |
||
495 | } |
||
496 | |||
497 | /*!------------------------------------------------------------------------ |
||
498 | * \fn as_float_2_ieee10(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
499 | * \brief convert float to non-IEEE extended (80 bit) float binary representation |
||
500 | * \param inp input number |
||
501 | * \param pDest where to write binary data |
||
502 | * \param NeedsBig req's big endian? |
||
503 | * \return >=0 if conversion was successful, <0 for error |
||
504 | * ------------------------------------------------------------------------ */ |
||
505 | |||
506 | int as_float_2_ieee10(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
507 | { |
||
508 | #if (defined IEEEFLOAT_10_10_LONG_DOUBLE) || (defined IEEEFLOAT_10_12_LONG_DOUBLE) || (defined IEEEFLOAT_10_16_LONG_DOUBLE) |
||
509 | memcpy(pDest, &inp, 10); |
||
510 | if (HostBigEndian != NeedsBig) |
||
511 | TSwap(pDest, 10); |
||
512 | |||
513 | #else |
||
514 | |||
515 | as_float_dissect_t dissect; |
||
516 | |||
517 | /* (1) Dissect IEEE number */ |
||
518 | |||
519 | as_float_dissect(&dissect, inp); |
||
520 | |||
521 | /* Infinity/NaN: Note that for IEEEFLOAT_10_2P8_LONG_DOUBLE (M68K Extended float), |
||
522 | the mantissa's MSB of infinities and NANs may be 1 or 0. We want the 1-version, |
||
523 | to be consistent with x86: */ |
||
524 | |||
525 | if ((dissect.fp_class == AS_FP_NAN) |
||
526 | || (dissect.fp_class == AS_FP_INFINITE)) |
||
527 | { |
||
528 | pDest[9] = (dissect.negative << 7) | 0x7f; |
||
529 | pDest[8] = 0xff; |
||
530 | |||
531 | /* clone all-ones mantissa for NaN: */ |
||
532 | |||
533 | if (as_float_mantissa_is_allones(&dissect)) |
||
534 | memset(&pDest[0], 8, 0xff); |
||
535 | |||
536 | /* otherwise clone MSB+LSB of mantissa: */ |
||
537 | |||
538 | else |
||
539 | { |
||
540 | memset(&pDest[0], 0x00, 8); |
||
541 | pDest[7] |= 0x80; |
||
542 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, dissect.mantissa_bits - 1)) |
||
543 | pDest[0] |= 0x01; |
||
544 | } |
||
545 | |||
546 | if (NeedsBig) |
||
547 | TSwap(pDest, 10); |
||
548 | |||
549 | return 10; |
||
550 | } |
||
551 | |||
552 | # ifdef IEEEFLOAT_10_2P8_LONG_DOUBLE |
||
553 | |||
554 | Byte *p_src = (Byte*)&inp; |
||
555 | pDest[NeedsBig ? 0 : 9] = p_src[0]; |
||
556 | pDest[NeedsBig ? 1 : 8] = p_src[1]; |
||
557 | pDest[NeedsBig ? 2 : 7] = p_src[4]; |
||
558 | pDest[NeedsBig ? 3 : 6] = p_src[5]; |
||
559 | pDest[NeedsBig ? 4 : 5] = p_src[6]; |
||
560 | pDest[NeedsBig ? 5 : 4] = p_src[7]; |
||
561 | pDest[NeedsBig ? 6 : 3] = p_src[8]; |
||
562 | pDest[NeedsBig ? 7 : 2] = p_src[9]; |
||
563 | pDest[NeedsBig ? 8 : 1] = p_src[10]; |
||
564 | pDest[NeedsBig ? 9 : 0] = p_src[11]; |
||
565 | |||
566 | # else /* !IEEEFLOAT_10_2P8_LONG_DOUBLE */ |
||
567 | |||
568 | as_float_dissect(&dissect, inp); |
||
569 | /* (2) Round to target precision: */ |
||
570 | |||
571 | as_float_round(&dissect, 64); |
||
572 | |||
573 | /* (3a) Overrange? */ |
||
574 | |||
575 | if (dissect.exponent > 16383) |
||
576 | return -E2BIG; |
||
577 | |||
578 | /* (3b) number that is too small may degenerate to 0: */ |
||
579 | |||
580 | while ((dissect.exponent < -16383) && !as_float_mantissa_is_zero(&dissect)) |
||
581 | { |
||
582 | dissect.exponent++; |
||
583 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
584 | } |
||
585 | |||
586 | /* TODO: This is needed to get a correct exponent value (0) for 0.0. |
||
587 | The old routine just added the difference of the 64-bit ad 80-bit |
||
588 | biases, which resulted in an exponent of 0x3c00 (-1023) in the |
||
589 | final value. Ultimately, as_float_dissect() should return an exponent |
||
590 | of zero. */ |
||
591 | |||
592 | if (as_float_mantissa_is_zero(&dissect)) |
||
593 | dissect.exponent = -16383; |
||
594 | |||
595 | /* numbers too small to represent degenerate to 0 (mantissa was shifted out) */ |
||
596 | |||
597 | if (dissect.exponent < -16383) |
||
598 | dissect.exponent = -16383; |
||
599 | |||
600 | /* For denormal numbers, exponent is 2^(-16382) and not 2^(-16383)! |
||
601 | So if we end up with an exponent of 2^(-16383), convert |
||
602 | mantissa so it corresponds to 2^(-16382): */ |
||
603 | |||
604 | else if (dissect.exponent == -16383) |
||
605 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
606 | |||
607 | /* (3c) add bias to exponent */ |
||
608 | |||
609 | dissect.exponent += 16383; |
||
610 | |||
611 | /* (3d) store result */ |
||
612 | |||
613 | pDest[9] = (dissect.negative << 7) |
||
614 | | ((dissect.exponent >> 8) & 0x7f); |
||
615 | pDest[8] = ((dissect.exponent >> 0) & 0xff); |
||
616 | pDest[7] = as_float_mantissa_extract(&dissect, 0, 8); /* leading one is explicit! */ |
||
617 | pDest[6] = as_float_mantissa_extract(&dissect, 8, 8); |
||
618 | pDest[5] = as_float_mantissa_extract(&dissect, 16, 8); |
||
619 | pDest[4] = as_float_mantissa_extract(&dissect, 24, 8); |
||
620 | pDest[3] = as_float_mantissa_extract(&dissect, 32, 8); |
||
621 | pDest[2] = as_float_mantissa_extract(&dissect, 40, 8); |
||
622 | pDest[1] = as_float_mantissa_extract(&dissect, 48, 8); |
||
623 | pDest[0] = as_float_mantissa_extract(&dissect, 56, 8); |
||
624 | |||
625 | if (NeedsBig) |
||
626 | TSwap(pDest, 10); |
||
627 | # endif /* IEEEFLOAT_10_2P8_LONG_DOUBLE */ |
||
628 | #endif /* IEEEFLOAT_10_1?_LONG_DOUBLE */ |
||
629 | return 10; |
||
630 | } |
||
631 | |||
632 | /*!------------------------------------------------------------------------ |
||
633 | * \fn as_float_2_ieee16(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
634 | * \brief convert float to IEEE quad (128 bit) float binary representation |
||
635 | * \param inp input number |
||
636 | * \param pDest where to write binary data |
||
637 | * \param NeedsBig req's big endian? |
||
638 | * \return >=0 if conversion was successful, <0 for error |
||
639 | * ------------------------------------------------------------------------ */ |
||
640 | |||
641 | int as_float_2_ieee16(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
642 | { |
||
643 | as_float_dissect_t dissect; |
||
644 | |||
645 | /* (1) Dissect IEEE number */ |
||
646 | |||
647 | as_float_dissect(&dissect, inp); |
||
648 | |||
649 | /* Infinity/NaN: */ |
||
650 | |||
651 | if ((dissect.fp_class == AS_FP_NAN) |
||
652 | || (dissect.fp_class == AS_FP_INFINITE)) |
||
653 | { |
||
654 | pDest[15] = (dissect.negative << 7) | 0x7f; |
||
655 | pDest[14] = 0xff; |
||
656 | |||
657 | /* clone all-ones mantissa for NaN: */ |
||
658 | |||
659 | if (as_float_mantissa_is_allones(&dissect)) |
||
660 | memset(&pDest[0], 14, 0xff); |
||
661 | |||
662 | /* otherwise clone MSB+LSB of mantissa: */ |
||
663 | |||
664 | else |
||
665 | { |
||
666 | memset(&pDest[0], 0x00, 14); |
||
667 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, 1)) |
||
668 | pDest[13] |= 0x80; |
||
669 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, dissect.mantissa_bits - 1)) |
||
670 | pDest[0] |= 0x01; |
||
671 | } |
||
672 | if (NeedsBig) |
||
673 | OSwap(pDest, 16); |
||
674 | return 16; |
||
675 | } |
||
676 | |||
677 | /* (2) Round to target precision: */ |
||
678 | |||
679 | as_float_round(&dissect, 113); |
||
680 | |||
681 | /* (3a) Overrange? */ |
||
682 | |||
683 | if (dissect.exponent > 16383) |
||
684 | return -E2BIG; |
||
685 | |||
686 | /* (3b) number that is too small may degenerate to 0: */ |
||
687 | |||
688 | while ((dissect.exponent < -16383) && !as_float_mantissa_is_zero(&dissect)) |
||
689 | { |
||
690 | dissect.exponent++; |
||
691 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
692 | } |
||
693 | |||
694 | /* TODO: This is needed to get a correct exponent value (0) for 0.0. |
||
695 | The old routine just added the difference of the 64-bit ad 80-bit |
||
696 | biases, which resulted in an exponent of 0x3c00 (-1023) in the |
||
697 | final value. Ultimately, as_float_dissect() should return an exponent |
||
698 | of zero. */ |
||
699 | |||
700 | if (as_float_mantissa_is_zero(&dissect)) |
||
701 | dissect.exponent = -16383; |
||
702 | |||
703 | /* numbers too small to represent degenerate to 0 (mantissa was shifted out) */ |
||
704 | |||
705 | if (dissect.exponent < -16383) |
||
706 | dissect.exponent = -16383; |
||
707 | |||
708 | /* For denormal numbers, exponent is 2^(-16382) and not 2^(-16383)! |
||
709 | So if we end up with an exponent of 2^(-16383), convert |
||
710 | mantissa so it corresponds to 2^(-16382): */ |
||
711 | |||
712 | else if (dissect.exponent == -16383) |
||
713 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
714 | |||
715 | /* (3c) add bias to exponent */ |
||
716 | |||
717 | dissect.exponent += 16383; |
||
718 | |||
719 | /* (3d) store result */ |
||
720 | |||
721 | pDest[15] = (dissect.negative << 7) |
||
722 | | ((dissect.exponent >> 8) & 0x7f); |
||
723 | pDest[14] = ((dissect.exponent >> 0) & 0xff); |
||
724 | pDest[13] = as_float_mantissa_extract(&dissect, 1, 8); |
||
725 | pDest[12] = as_float_mantissa_extract(&dissect, 9, 8); |
||
726 | pDest[11] = as_float_mantissa_extract(&dissect, 17, 8); |
||
727 | pDest[10] = as_float_mantissa_extract(&dissect, 25, 8); |
||
728 | pDest[ 9] = as_float_mantissa_extract(&dissect, 33, 8); |
||
729 | pDest[ 8] = as_float_mantissa_extract(&dissect, 41, 8); |
||
730 | pDest[ 7] = as_float_mantissa_extract(&dissect, 49, 8); |
||
731 | pDest[ 6] = as_float_mantissa_extract(&dissect, 57, 8); |
||
732 | pDest[ 5] = as_float_mantissa_extract(&dissect, 65, 8); |
||
733 | pDest[ 4] = as_float_mantissa_extract(&dissect, 73, 8); |
||
734 | pDest[ 3] = as_float_mantissa_extract(&dissect, 81, 8); |
||
735 | pDest[ 2] = as_float_mantissa_extract(&dissect, 89, 8); |
||
736 | pDest[ 1] = as_float_mantissa_extract(&dissect, 97, 8); |
||
737 | pDest[ 0] = as_float_mantissa_extract(&dissect,105, 8); |
||
738 | |||
739 | if (NeedsBig) |
||
740 | OSwap(pDest, 16); |
||
741 | |||
742 | return 16; |
||
743 | } |
||
744 | |||
745 | /*!------------------------------------------------------------------------ |
||
746 | * \fn as_float_2_ieee2(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
747 | * \brief convert floating point number to IEEE half size (16 bit) format |
||
748 | * \param inp floating point number to store |
||
749 | * \param pDest where to write result (2 bytes) |
||
750 | * \param NeedsBig req's big endian? |
||
751 | * \return >=0 if conversion was successful, <0 for error |
||
752 | * ------------------------------------------------------------------------ */ |
||
753 | |||
754 | int as_float_2_ieee2(as_float_t inp, Byte *pDest, Boolean NeedsBig) |
||
755 | { |
||
756 | as_float_dissect_t dissect; |
||
757 | as_float_round_t round_type; |
||
758 | |||
759 | /* (1) Dissect IEEE number */ |
||
760 | |||
761 | as_float_dissect(&dissect, inp); |
||
762 | |||
763 | /* Infinity/NaN: */ |
||
764 | |||
765 | if ((dissect.fp_class == AS_FP_NAN) |
||
766 | || (dissect.fp_class == AS_FP_INFINITE)) |
||
767 | { |
||
768 | pDest[1 ^ !!NeedsBig] = (dissect.negative << 7) | 0x7c; |
||
769 | pDest[0 ^ !!NeedsBig] = 0; |
||
770 | |||
771 | /* clone all-ones mantissa for NaN: */ |
||
772 | |||
773 | if (as_float_mantissa_is_allones(&dissect)) |
||
774 | { |
||
775 | pDest[1 ^ !!NeedsBig] |= 0x03; |
||
776 | pDest[0 ^ !!NeedsBig] = 0xff; |
||
777 | } |
||
778 | |||
779 | /* otherwise clone MSB+LSB of mantissa: */ |
||
780 | |||
781 | else |
||
782 | { |
||
783 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, 1)) |
||
784 | pDest[1 ^ !!NeedsBig] |= 0x02; |
||
785 | if (as_float_get_mantissa_bit(dissect.mantissa, dissect.mantissa_bits, dissect.mantissa_bits - 1)) |
||
786 | pDest[0 ^ !!NeedsBig] |= 0x01; |
||
787 | } |
||
788 | return 2; |
||
789 | } |
||
790 | |||
791 | /* (2) Round to target precision: */ |
||
792 | |||
793 | round_type = as_float_round(&dissect, 11); |
||
794 | |||
795 | /* (3a) Overrange? */ |
||
796 | |||
797 | if (dissect.exponent > 15) |
||
798 | return -E2BIG; |
||
799 | else if ((dissect.exponent == 15) |
||
800 | && as_float_mantissa_is_allones(&dissect) |
||
801 | && (round_type == e_round_down)) |
||
802 | return -E2BIG; |
||
803 | |||
804 | /* (3b) number that is too small may degenerate to 0: */ |
||
805 | |||
806 | while ((dissect.exponent < -15) && !as_float_mantissa_is_zero(&dissect)) |
||
807 | { |
||
808 | dissect.exponent++; |
||
809 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
810 | } |
||
811 | |||
812 | /* numbers too small to represent degenerate to 0 (mantissa was shifted out) */ |
||
813 | |||
814 | if (dissect.exponent < -15) |
||
815 | dissect.exponent = -15; |
||
816 | |||
817 | /* For denormal numbers, exponent is 2^(-14) and not 2^(-15)! |
||
818 | So if we end up with an exponent of 2^(-15), convert |
||
819 | mantissa so it corresponds to 2^(-14): */ |
||
820 | |||
821 | else if (dissect.exponent == -15) |
||
822 | as_float_mantissa_shift_right(dissect.mantissa, 0, dissect.mantissa_bits); |
||
823 | |||
824 | /* (3c) add bias to exponent */ |
||
825 | |||
826 | dissect.exponent += 15; |
||
827 | |||
828 | /* (3d) store result */ |
||
829 | |||
830 | pDest[1 ^ !!NeedsBig] = (dissect.negative << 7) |
||
831 | | ((dissect.exponent << 2) & 0x7c) |
||
832 | | as_float_mantissa_extract(&dissect, 1, 2); |
||
833 | pDest[0 ^ !!NeedsBig] = as_float_mantissa_extract(&dissect, 3, 8); |
||
834 | return 2; |
||
835 | } |