
QingKeV4 Microprocessor Manual
V1.4

Overview
QingKe V4 series microprocessors are self-developed 32-bit general-purpose MCU microprocessors based on
standard RISC-V instruction set architecture. According to different application scenarios and instruction set
combinations, this series includes V4A, V4B, V4C, V4J, V4F. The V4 series all support RV32IMAC
instruction set extensions, of which V4F supports single-precision hardware floating-point, i.e., it supports
RV32IMACF extensions. V4B, V4C, V4J, V4F also support custom extensions XW, in addition to Hardware
Prologue/Epilogue (HPE), Vector Table Free (VTF), streamlined 1/2-wire debugging interface, support for the
"WFE" instruction, physical memory protection (PMP), and other features, the V4J also supports instruction
caching. V4J also supports instruction cache.

Features
Features Description

ISA RV32IMAC[F]
Pipeline Level 3

FPU Supports single-precision floating-point
Branch prediction BHT/BTB/RAS
Instruction cache Support up to 64KB

Interrupt Supports a total of 256 interrupts including exceptions, and
supports VTF

HPE Supports up to 3 levels of HPE
PMP Supports 4 memory protection zones

Low-power consumption mode Supports Sleep and Deep sleep modes, and support WFI and
WFE sleep methods

Extended instruction set Supports half-word and byte operation compression instructions
Debug 1/2-wire SDI, standard RISC-V debug

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 1

Chapter 1 Overview

QingKe V4 series microprocessors include V4A, V4B, V4C and V4F, and there are certain differences between
each series according to the applications, and the specific differences are detailed in Table 1-1.

Table 1-1 Microprocessor comparison overview

Feature

Model

ISA
HPE

number of
levels

Interruptions
nesting

number of
levels

VTF
number of
channels

Pipeline
Vector

table mode
Cache

Extended
Instruction

(XW)

Number of
memory

protection
areas

V4A RV32IMAC 2 2 4 3
Address/

Instruction
× × 4

V4B RV32IMAC 2 2 4 3
Address/

Instruction
× √ 0

V4C RV32IMAC 2 2 4 3
Address/

Instruction
× √ 4

V4F RV32IMACF 3 8 4 3
Address/

Instruction
× √ 4

V4J RV32IMAC 2 2 4 3
Address/

Instruction
I-Cache √ 4

Note: OS task switching generally uses stack push, which are not limited in number of levels.

1.1 Instruction Set
QingKe V4 series microprocessors follow the standard RISC-V Instruction Set Architecture (ISA). Detailed
documentation of the standard can be found in "The RISC-V Instruction Set Manual, Volume I: User-Level
ISA, Document Version 2.2" on the RISC-V International website. The RISC-V instruction set has a simple
architecture and supports a modular design, allowing for flexible combinations based on different needs, and
the V4 series supports the following instruction set extensions.
 RV32: 32-bit architecture, general-purpose register bit width of 32 bits
 I: Supports shaping operation, with 32 shaping registers
 M: Supports shaping multiplication and division instructions
 A: Supports atomic commands
 C: Supports 16-bit compression instruction
Note: 1: The sub-instruction sets supported by different models may be different, for details, please refer to
Table 1-1.

2: To further improve code density, extend the XW subset by adding the following compression directives
c.lbu/c.lhu/c.sb/c.sh/c.lbusp/c.lhusp/c.sbsp/c.shsp, use based on the MRS compiler or the toolchain it provides.

1.2 Register Set
The RV32I has 32 register sets from x0-x31. The V3 series does not support the "F" extension, i.e., there is no
floating-point register set. In the RV32, each register is 32 bits. Table 1-2 below lists the registers of RV32I
and their descriptions.

Table 1-2 RISC-V registers
Register ABI Name Description Storer

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 2

x0 zero Hardcoded 0 -
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer -
x4 tp Thread pointer -

x5-7 t0-2 Temporary register Caller
x8 s0/fp Save register/frame pointer Callee
x9 s1 Save register Callee

x10-11 a0-1 Function parameters/return values Caller
x12-17 a2-7 Function parameters Caller
x18-27 a2-11 Save register Callee
X28-31 t3-6 Temporary register Caller

f0-7 ft0-7 Floating-point temporary register Caller
f8-9 fs0-1 Floating-point save register Callee

f10-11 fa0-1 Floating-point function parameters/return values Caller
f12-17 fa2-7 Floating-point function parameters Caller
f18-27 fs2-11 Floating-point save register Callee
f28-31 ft8-11 Floating-point temporary register Caller

The Caller attribute in the above table means that the called procedure does not save the register value, and
the Callee attribute means that the called procedure saves the register.

1.3 Privilege Mode
The standard RISC-V architecture includes three privileged modes: Machine mode, Supervisor mode, and
User mode, as shown in Table 1-3 below. The machine mode is a mandatory mode, and the other modes are
optional modes. For details, you can refer to "The RISC-V Instruction Set Manual Volume II: Privileged
Architecture", which can be downloaded for free from the RISC-V International website.

Table 1-3 RISC-V architecture privilege mode
Code Name Abbreviations
0b00 User Mode U
0b01 Supervisor Model S
0b10 Reserved Reserved
0b11 Machine mode M

QingKe V4 series microprocessors support two of these privileged modes.
 Machine mode
Machine mode has the highest privileges, and this mode allows the program to access all Control and Status
Registers (CSRs), as well as all physical memory protection units except for the Physical Memory Protection
(PMP) lock. The power-up default is in Machine mode. When the execution of mret (machine mode return
instruction) returns, according to the MPP bit in the CSR register mstatus (machine mode status register), if
MPP=0b00, it will exit Machine mode and enter User mode, and if MPP=0b11, it will remain in Machine
mode.
 User mode
User mode has the lowest privilege, and only limited CSR registers and physical address areas allowed by
PMP privilege. When an exception or interrupt occurs, the microprocessor goes from User mode to Machine
mode to handle exceptions and interrupts.

1.4 CSR Register
A series of CSR registers are defined in the RISC-V architecture to control and record the operating state of

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 3

the microprocessor. These CSRs can be extended by 4096 registers using an internal dedicated 12-bit address
coding space. And use the high two CSR[11:10] to define the read/write permission of this register, 0b00, 0b01,
0b10 for read/write allowed and 0b11 for read only. Use the two bits CSR[9:8] to define the lowest privilege
level that can access this register, and the value corresponds to the privilege mode defined in Table 1-3. The
QingKe V4 series microprocessors include the standard definition of relevant CSR registers in addition to
some custom CSR registers extended for control and status logging of enhanced functions. The CSR registers
implemented by the microprocessor are detailed in Chapter 8.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 4

Chapter 2 Exception

Exception mechanism, which is a mechanism to intercept and handle "unusual operation events". QingKe V4
series microprocessors are equipped with an exception response system that can handle up to 256 exceptions,
including interrupts. When an exception or interruption occurs, the microprocessor can quickly respond and
handle the exception and interruption events.

2.1 Exception Types
The hardware behavior of the microprocessor is the same whether an exception or an interrupt occurs. The
microprocessor suspends the current program, moves to the exception or interrupt handler, and returns to the
previously suspended program when processing is complete. Broadly speaking, interrupts are also part of
exceptions. Whether exactly the current occurrence is an interrupt or an exception can be viewed through the
Machine mode exception cause register mcause. The mcause[31] is the interrupt field, which is used to indicate
whether the cause of the exception is an interrupt or an exception. mcause[31]=1 means interrupt,
mcause[31]=0 means exception. mcause[30:0] is the exception code, which is used to indicate the specific
cause of the exception or the interrupt number, as shown in the following table.

Table 2-1 V4 microprocessor exception codes

Interrupt Exception
codes

Synchronous /
Asynchronous Reason for exception

1 0-1 - Reserved
1 2 Precise asynchronous NMI interrupts
1 3-11 - Reserved
1 12 Precise asynchronous SysTick interrupts
1 13 - Reserved
1 14 Synchronous Software interrupts
1 15 - Reserved
1 16-255 Precise asynchronous External interrupt 16-255
0 0 Synchronous Instruction address misalignment
0 1 Synchronous Fetch command access error
0 2 Synchronous Illegal instructions
0 3 Synchronous Breakpoints

0 4 Synchronous Load instruction access address
misalignment

0 5 Non- precision
asynchronous Load command access error

0 6 Synchronous Store/AMO instruction access address
misalignment

0 7 Non-precision
asynchronous Store/AMO command access error

0 8 Synchronous Environment call in User mode
0 11 Synchronous Environment call in Machine mode

'Synchronous' in the table means that an instruction can be located exactly where it is executed, such as an
ebreak or ecall instruction, and each execution of that instruction will trigger an exception. 'Asynchronous'
means that it is not possible to pinpoint an instruction, and the instruction PC value may be different each time
an exception occurs. 'Precise asynchronous' means that an exception can be located exactly at the boundary of
an instruction, i.e., the state after the execution of an instruction, such as an external interrupt. 'Non- precision
asynchronous' means that the boundary of an instruction cannot be precisely located, and may be the state after
an instruction has been interrupted halfway through execution, such as a memory access error. Access to

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 5

memory takes time, and the microprocessor usually does not wait for the end of the access when accessing
memory, but continues to execute the instruction, when the access error exception occurs again, the
microprocessor has already executed the subsequent instructions, and cannot be precisely located.

2.2 Entering Exception
When the program is in the process of normal operation, if for some reason, triggered into an exception or
interrupt. The hardware behavior of the microprocessor at this point can be summarized as follows.

(1) Suspend the current program flow and move to the execution of exception or interrupt handling functions.

The entry base address and addressing mode of the exception or interrupt function are defined by the exception
entry base address register mtvec. mtvec[31:2] defines the base address of the exception or interrupt function.
mtvec[1:0] defines the addressing mode of the handler function, where mtvec[0] defines the entry mode of the
exception and interrupt. when mtvec[0]=0, all exceptions and interrupts use When mtvec[0]=0, all exceptions
and interrupts use a unified entry, i.e., when an exception or interrupt occurs, it turns to the base address defined
by mtvec[31:2] for execution. When mtvec[0]=1, exceptions and interrupts use vector table mode, i.e., each
exception and interrupt is numbered, and the address is shifted according to interrupt number*4, and when an
exception or interrupt occurs, it is shifted to the base address defined by mtvec[31:2] + interrupt number*4 for
execution. The vector mode mtvec[1] defines the identification mode of the vector table. When mtvec[1]=0,
the instruction stored at the vector table is an instruction to jump to the exception or interrupt handling function,
or it can be another instruction; when mtvec[1]=1, the absolute address of the exception handling function is
stored at the vector table.

(2) Update CSR register
When an exception or interrupt is entered, the microprocessor automatically updates the relevant CSR registers,
including the machine mode exception cause register mcause, the machine mode exception pointer register
mepc, the Machine mode exception value register mtval, and the Machine mode status register mstatus.
 Update mcause
As mentioned before, after entering an exception or interrupt, its value reflects the current exception type or
interrupt number, and the software can read this register value to check the cause of the exception or determine
the source of the interrupt, as detailed in Table 2-1.
 Update mepc
The standard definition of the return address of the microprocessor after exiting an exception or interrupt is
stored in mepc. So when an exception or interrupt occurs, the hardware automatically updates the mepc value
to the current instruction PC value when the exception is encountered, or the next pre-executed instruction PC
value before the interrupt. After the exception or interrupt is processed, the microprocessor uses its saved value
as the return address to return to the location of the interrupt to continue execution.

However, it is worth noting that.
1. mepc is a readable and writable register, and the software can also modify the value for the purpose of

modifying the location of the PC pointer running after the return.
2. When an interrupt occurs, i.e., when the exception cause register mcause[31]=1, the value of mepc is

updated to the PC value of the next unexecuted instruction at the time of the interrupt.
3. And when an exception occurs, the value of mepc is updated to the instruction PC value of the current

exception when the exception cause register mcause[31]=0. So at this time when the exception returns, if

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 6

we return directly using the value of mepc, we still continue to execute the instruction that generated the
exception before, and at this time, we will continue to enter the exception. Usually, after we handle the
exception, we can modify the value of mepc to the value of the next unexecuted instruction and then
return. For example, if we cause an exception due to ecall/ebreak, after handling the exception, since
ecall/ebreak (c.ebreak is 2 bytes) is a 4-byte instruction, we only need the software to modify the value
of mepc to mepc+4 (c.ebreak is mepc+2) and then return.

 Update mtval
When exceptions and interrupts are entered, the hardware will automatically update the value of mtval, which
is the value that caused the exception. The value is typically.
1. If an exception is caused by a memory access, the hardware will store the address of the memory access

at the time of the exception into mtval.
2. If the exception is caused by an illegal instruction, the hardware will store the instruction code of the

instruction into mtval.
3. If the exception is caused by a hardware breakpoint, the hardware will store the PC value at the breakpoint

into mtval.
4. For other exceptions, the hardware sets the value of mtval to 0, such as ebreak, the exception caused by

ecall instruction.
5. When entering the interrupt, the hardware sets the value of mtval to 0.
 Update mstatus
Upon entering exceptions and interrupts, the hardware updates certain bits in mstatus.
1. MPIE is updated to the MIE value before entering the exception or interrupt, and MPIE is used to restore

the MIE after the exception and interrupt are over.
2. MPP is updated to the privileged mode before entering exceptions and interrupts, and after the exceptions

and interrupts are over, MPP is used to restore the previous privileged mode.
3. QingKe V4 microprocessor supports interrupt nesting in Machine mode, and MIE will not be cleared

after entering exceptions and interrupts.

(3) Update microprocessor privilege mode
When exceptions and interrupts occur, the privileged mode of the microprocessor is updated to Machine mode.

2.3 Exception Handling Functions
Upon entering an exception or interrupt, the microprocessor executes the program from the address and mode
defined by the mtvec register. When using the unified entry, the microprocessor takes a jump instruction from
the base address defined by mtvec[31:2] based on the value of mtvec[1], or gets the exception and interrupt
handling function entry address and goes to execute it instead. At this time, the exception and interrupt
handling function can determine whether the cause is an exception or interrupt based on the value of
mcause[31], and the type and cause of the exception or the corresponding interrupt can be judged by the
exception code and handled accordingly.

When using the base address + interrupt number *4 for offset, the hardware automatically jumps to the vector
table to get the entry address of the exception or interrupt function based on the interrupt number and jumps
to execute it.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 7

2.4 Exception Exit
After the exception or interrupt handler is completed, it is necessary to exit from the service program. After
entering exceptions and interrupts, the microprocessor enters Machine mode from User mode, and the
processing of exceptions and interrupts is also completed in Machine mode. When it is necessary to exit
exceptions and interrupts, it is necessary to use the mret instruction to return. At this time, the microprocessor
hardware will automatically perform the following operations.
 The PC pointer is restored to the value of CSR register mepc, i.e., execution starts at the instruction

address saved by mepc. It is necessary to pay attention to the offset operation of mepc after the exception
handling is completed.

 Update CSR register mstatus, MIE is restored to MPIE, and MPP is used to restore the privileged mode
of the previous microprocessor.

The entire exception response process can be described by the following Figure 2-1.
Figure 2-1 Exception response process diagram

Main Exception

Exception_Handler

Update CSR

mepc

mcause

mtval

mstatus

Machine Mode(Update Privileged Mode)

mstatus

“mret” PC=mepc，Then running

User Mode(Update Privileged Mode)

Update CSR

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 8

Chapter 3 PFIC and Interrupt Control

QingKe V4 microprocessor is designed with a Programmable Fast Interrupt Controller (PFIC) that can manage
up to 256 interrupts including exceptions. The first 16 of them are fixed as internal interrupts of the
microprocessor, and the rest are external interrupts, i.e. the maximum number of external interrupts can be
extended to 240. Its main features are as follows.
 240 external interrupts, each interrupt request has independent trigger and mask control bits, with

dedicated status bits
 Programmable multi-level interrupt nesting, maximum nesting depth 8 levels
 Special fast interrupt in/out mechanism, hardware automatic stacking and recovery, maximum hardware

stacking depth of 3 levels, no instruction overhead
 Vector Table Free (VTF) interrupt response mechanism, 4-channel programmable direct access to

interrupt vector addresses
Note: The maximum nesting depth and HPE depth supported by interrupt controllers vary for different
microprocessor models, which can be found in Table 1-1.

The vector table of interrupts and exceptions is shown in Table 3-1 below.

Table 3-1 Exception and interrupt vector table
Number Priority Type Name Description

0 - - - -
1 - - - -
2 -5 Fixed NMI Non-maskable interrupt
3 -4 Fixed EXC Exception interrupt
4 - - - -
5 -3 Fixed ECALL-M Machine mode callback interrupt

6-7 - - - -
8 -2 Fixed ECALL-U User mode callback interrupt
9 -1 Fixed BREAKPOINT Breakpoint callback interrupt

10-11 - - - -
12 0 Programmable SysTick System timer interrupt
13 - - - -
14 1 Programmable SWI Software interrupt
15 - - - -

16-255 2-241 Programmable External interrupt External interrupt 16-255

3.1 PFIC Register Set
Table 3-2 PFIC Registers

Name Access address Access Description Reset value

PFIC_ISRx
0xE000E000
-0xE000E01C

RO Interrupt enable status register x 0x00000000

PFIC_IPRx
0xE000E020
-0xE000E03C

RO
Interrupt pending status register
x

0x00000000

PFIC_ITHRESDR 0xE000E040 RW
Interrupt priority threshold
configuration register

0x00000000

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 9

PFIC_CFGR 0xE000E048 RW Interrupt configuration register 0x00000000
PFIC_GISR 0xE000E04C RO Interrupt global status register 0x00000000

PFIC_VTFADDRRx
0xE000E060
-0xE000E06C

RW VTF x offset address register 0x00000000

PFIC_IENRx
0xE000E100
-0xE000E11C

WO Interrupt enable setting register x 0x00000000

PFIC_IRERx
0xE000E180
-0xE000E19C

WO Interrupt enable clear register x 0x00000000

PFIC_IPSRx
0xE000E200
-0xE000E21C

WO
Interrupt pending setting register
x

0x00000000

PFIC_IPRRx
0xE000E280
-0xE000E29C

WO Interrupt pending clear register x 0x00000000

PFIC_IACTRx
0xE000E300
-0xE000E31C

RO
Interrupt activation status
register x

0x00000000

PFIC_IPRIORx
0xE000E400
-0xE000E43C

RW
Interrupt priority configuration
register

0x00000000

PFIC_SCTLR 0xE000ED10 RW System control register 0x00000000
Note: 1. The default value of PFIC_ISR0 register is 0xC, which means that NMI and exception are always
enabled by default.

2.ECALL-M, ECALL-U, BREAKPOINT are all a case of EXC, the status is indicated by the status bit 3
of EXC.

3. NMI and EXC support interrupt pending clear and setup operation, but not interrupt enable clear and
setup operation.

4.ECALL-M, ECALL-U, BREAKPOINT do not support interrupt pending clear and set, interrupt enable
clear and set operation.

Each register is described as follows.

Interrupt Enable Status and Interrupt Pending Status Registers (PFIC_ISR<0-7>/PFIC_IPR<0-7>)

Name Access address Access Description Reset value

PFIC_ISR0 0xE000E000 RO

Interrupt 0-31 enable status
register, a total of 32 status bits
[n], indicating #n interrupt
enable status
Note: NMI and EXC are enabled
by default

0x0000000C

PFIC_ISR1 0xE000E004 RO
Interrupt 32-63 enable status
register, total 32 status bits

0x00000000

… … … … …

PFIC_ISR7 0xE000E01C RO
Interrupt 224-255 enable status
register, total 32 status bits

0x00000000

PFIC_IPR0 0xE000E020 RO

Interrupt 0-31 pending status
register, a total of 32 status bits
[n], indicating the pending status
of interrupt #n

0x00000000

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 10

PFIC_IPR1 0xE000E024 RO
Interrupt 32-63 pending status
registers, 32 status bits in total

0x00000000

… … … … …

PFIC_IPR7 0xE000E03C RO
Interrupt 244-255 pending status
register, 32 status bits in total

0x00000000

2 sets of registers are used to enable and de-enable the corresponding interrupts.

Interrupt Enable Setting and Clear Registers (PFIC_IENR<0-7>/PFIC_IRER<0-7>)

Name Access address Access Description Reset value

PFIC_IENR0 0xE000E100 WO

Interrupt 0-31 enable setting
register, a total of 32 setting bits
[n], for interrupt #n enable
setting
Note: NMI and EXC are enabled
by default

0x00000000

PFIC_IENR1 0xE000E104 WO
Interrupt 32-63 enable setting
register, total 32 setting bits

0x00000000

… … … … …

PFIC_IENR7 0xE000E11C WO
Interrupt 224-255 enable setting
register, total 32 setting bits

0x00000000

- - - - -

PFIC_IRER0 0xE000E180 WO

Interrupt 0-31 enable clear
register, a total of 32 clear bits
[n], for interrupt #n enable clear
Note: NMI and EXC cannot be
operated

0x00000000

PFIC_IRER1 0xE000E184 WO
Interrupt 32-63 enable clear
register, total 32 clear bits

0x00000000

… … … … …

PFIC_IRER7 0xE000E19C WO
Interrupt 244-255 enable clear
register, total 32 clear bits

0x00000000

2 sets of registers are used to enable and de-enable the corresponding interrupts.
Note: When using registers to mask any interrupt or using CSR registers to mask global interrupts, add a
'fence.i' instruction to synchronize between core control state and interrupt enable state.

Interrupt Pending Setting and Clear Registers (PFIC_IPSR<0-7>/PFIC_IPRR<0-7>)

Name
Access
address

Access Description Reset value

PFIC_IPSR0 0xE000E200 WO

Interrupt 0-31 pending setting register, 32
setting bits [n], for interrupt #n pending
setting
Note: ECALL-M, ECALL-U, BREAKPOINT
do not support this operation.

0x00000000

PFIC_IPSR1 0xE000E204 WO
Interrupt 32-63 pending setup register, total
32 setup bits

0x00000000

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 11

… … … … …

PFIC_IPSR7 0xE000E21C WO
Interrupt 224-255 pending setting register,
32 setting bits in total

0x00000000

- - - - -

PFIC_IPRR0 0xE000E280 WO

Interrupt 0-31 pending clear register, a total
of 32 clear bits [n], for interrupt #n pending
clear
Note: ECALL-M, ECALL-U, BREAKPOINT
do not support this operation.

0x00000000

PFIC_IPRR1 0xE000E284 WO
Interrupt 32-63 pending clear register, total
32 clear bits

0x00000000

… … … … …

PFIC_IPRR7 0xE000E29C WO
Interrupt 244-255 pending clear register,
total 32 clear bits

0x00000000

When the microprocessor enables an interrupt, it can be set directly through the interrupt pending register to
trigger into the interrupt. Use the interrupt pending clear register to clear the pending trigger.

Interrupt Activation Status Register (PFIC_IACTR<0-7>)

Name Access address Access Description Reset value

PFIC_IACTR0 0xE000E300 RO

Interrupt 0-31 activates the
status register with 32 status
bits [n], indicating that
interrupt #n is being executed

0x00000000

PFIC_IACTR1 0xE000E304 RO
Interrupt 32-63 activation
status registers, 32 status bits in
total

0x00000000

… … … … …

PFIC_IACTR7 0xE000E31C RO
Interrupt 224-255 activation
status register, total 32 status
bits

0x00000000

Each interrupt has an active status bit that is set up when the interrupt is entered and cleared by hardware when
mret returns.

Interrupt Priority and Priority Threshold Registers (PFIC_IPRIOR<0-7>/PFIC_ITHRESDR)

Name Access address Access Description Reset value

PFIC_IPRIOR0 0xE000E400 RW

Interrupt 0 priority configuration.
For V4A:
[7:4]: Priority control bits
If the configuration is not nested, no
preemption bit
If configured with 2 levels of nesting,
bit7 is the preempted bit.
[3:0]: Reserved, fixed to 0

For V4B/C:

0x00

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 12

[7:5]: Priority control bits
If the configuration is not nested, no
preemption bit
If configured with 2 levels of nesting,
bit7 is the preempted bit.
[4:0]: Reserved, fixed to 0

For V4F:
[7:5]: Priority control bits
If the configuration is not nested, no
preemption bit
If configured with 2 levels of nesting,
bit7 is the preempted bit.
If configured with 4 levels of nesting,
bit7-bit6 is the preempted bit.
If configured with 8 levels of nesting,
bit7-bit5 is the preempted bit.
[4:0]: Reserved, fixed to 0

Note: The smaller the priority value,
the higher the priority. If the same
preemption priority interrupt hangs
at the same time, the interrupt with
the higher priority will be executed
first.

PFIC_IPRIOR1 0xE000E401 RW
Interrupt 1 priority setting, same
function as PFIC_IPRIOR0

0x00

PFIC_IPRIOR2 0xE000E402 RW
Interrupt 2 priority setting, same
function as PFIC_IPRIOR0

… … … … …

PFIC_IPRIOR254 0xE000E4FE RW
Interrupt 254 priority setting, same
function as PFIC_IPRIOR0

0x00

PFIC_IPRIOR255 0xE000E4FF RW
Interrupt 255 priority setting, same
function as PFIC_IPRIOR0

0x00

- - - - -

PFIC_ITHRESDR 0xE000E040 RW

Interrupt priority threshold setting
For V4A:
[31:8]: Reserved, fixed to 0
[7:4]: Priority threshold
[3:0]: Reserved, fixed to 0

For V4B/C/F:
[31:8]: Reserved, fixed to 0
[7:5]: Priority threshold
[4:0]: Reserved, fixed to 0

0x00

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 13

Note: For interrupts with priority
value ≥ threshold, the interrupt
service function is not executed when
a hang occurs, and when this register
is 0, it means the threshold register is
invalid.

Interrupt Configuration Register (PFIC_CFGR)

Name Access address Access Description Reset value
PFIC_CFGR 0xE000E048 RW Interrupt configuration register 0x00000000

Its folks are defined as:

Bit Name Access Description Reset value

[31:16] KEYCODE WO

Corresponding to different target control bits, the
corresponding security access identification data
needs to be written simultaneously in order to be
modified, and the readout data is fixed to 0.
KEY1 = 0xFA05;
KEY2 = 0xBCAF;
KEY3 = 0xBEEF.

0

[15:8] Reserved RO Reserved 0

7 SYSRESET WO

System reset (simultaneous writing to KEY3).
Auto clear 0.
Writing 1 is valid, writing 0 is invalid.
Note: Same function as the PFIC_SCTLR register
SYSRESET bit.

0

[6:0] Reserved RW Reserved 0
V4 series microprocessors This register is mainly used for compatible.

Interrupt Global Status Register (PFIC_GISR)

Name Access address Access Description Reset value
PFIC_CFGR 0xE000E04C RO Interrupt global status register 0x00000000

Its folks are defined as:

Bit Name Access Description Reset value
[31:10] Reserved RO Reserved 0

9 GPENDSTA RO
Whether an interrupt is currently pending.
1: Yes; 0: No.

0

8 GACTSTA RO
Whether an interrupt is currently being executed.
1: Yes; 0: No.

0

[7:0] NESTSTA RO

Current interrupt nesting status, currently supports
a maximum of 8 levels of nesting, the maximum
hardware stack depth is 3. If the nesting depth is
set greater than 3, the lower three levels of
interrupts should be configured for hardware

0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 14

stacking, and the remaining high priority levels
use stack push.
0xFF: in level 8 interrupt.
0x7F: in level 7 interrupt.
0x3F: in level 6 interrupt.
0x1F: in level 5 interrupts.
0x0F: in level 4 interrupt.
0x07: in level 3 interrupt.
0x03: in level 2 interrupt.
0x01: in level 1 interrupt.
0x00: no interrupts occur.
Other: Impossible situation.
Note: Cases greater than level 2 are only valid for
V4F.

VTF ID and Address Registers (PFIC_VTFIDR/PFIC_VTFADDRR<0-1>)

Name Access address Access Description Reset value

PFIC_VTFIDR 0xE000E050 RW

[31:24]: number of VTF 3
[23:16]: number of VTF 2
[15:8]: number of VTF 1
[7:0]: number of VTF 0

0x00000000

- - - - -

PFIC_VTFADDRR0 0xE000E060 RW

[31:1]: VTF 0 address, two-byte
alignment
[0]:
1: Enable VTF 0 channel
0: Close

0x00000000

PFIC_VTFADDRR1 0xE000E064 RW

[31:1]: VTF 1 address, two-byte
alignment
[0]:
1: Enable VTF 1 channel
0: Close

0x00000000

System Control Register (PFIC_SCTLR)

Name Access address Access Description Reset value
PFIC_SCTLR 0xE000ED10 RW System control register 0x00000000

Each of them is defined as follows.

Bit Name Access Description Reset value

31 SYSRESET WO
System reset, clear 0 automatically. write 1 valid,
write 0 invalid, same effect as PFIC_CFGR
register

0

[30:6] Reserved RO Reserved 0
5 SETEVENT WO Set the event to wake up the WFE case. 0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 15

4 SEVONPEND RW

When an event occurs or interrupts a pending
state, the system can be woken up from after the
WFE instruction, or if the WFE instruction is not
executed, the system will be woken up
immediately after the next execution of the
instruction.
1: Enabled events and all interrupts (including
unenabled interrupts) can wake up the system.
0: Only enabled events and enabled interrupts can
wake up the system.

0

3 WFITOWFE RW

Execute the WFI command as if it were a WFE.
1: treat the subsequent WFI instruction as a WFE
instruction.
0: No effect.

0

2 SLEEPDEEP RW
Low power mode of the control system.
1: deepsleep 0: sleep

0

1
SLEEPONEXI

T
RW

System status after control leaves the interrupt
service program.
1: The system enters low-power mode.
0: The system enters the main program.

0

0 Reserved RO Reserved 0

3.2 Interrupt-related CSR Registers
In addition, the following CSR registers also have a significant impact on the processing of interrupts.

Interrupt System Control Register (INTSYSCR)

Name CSR Address Access Description Reset value
INTSYSCR 0x804 MRW Interrupt system control register 0x00000000

Its folks are defined as.

Bit Name Access Description Reset value
[31:16] Reserved MRO Reserved 0

[15:8] PMTSTA MRO

Preemption status indication. 0x00: no
preemption bits in the priority configuration
bits, no interrupt nesting occurs.
0x80: the highest bit in the priority
configuration bit is a preemption bit, with 2
levels of interrupt nesting.
0xC0: priority configuration bits in which the
high 2 bits are preempted and 4 levels of
interrupts are nested.
0xE0: The high 3 bits of the priority
configuration bits are preempted, with 8
levels of interrupt nesting.

0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 16

Note: This status is valid only for V4F.
[7:6] Reserved MRO Reserved 0

5
GIHWSTKNE

N
MRW1

Global interrupt and HPE off enable.
Note: This bit is often used in real-time
operating systems, when the interrupt
switches context, set this bit to turn off the
global interrupt and HPE out stack, when the
context switch is complete, after the
execution of the interrupt return, the
hardware automatically clears this bit.

0

4 HWSTKOVEN MRW

Interrupt enable after HPE overflow.
0: Global interrupts are turned off after a
HPE overflow.
1: Interrupts are still executable after a
hardware stack overflow.
Note: HPE depth is 3. When the
configuration nesting level is greater than 3,
if the bit is set to 1, the low priority three
interrupts need to be configured as HPE and
the high priority as SPE.

0

[3:2] PMTCFG MRW

Interrupt nesting depth configuration.
0b00: No nesting, the number of preemption
bits is 0.
0b01: 2 levels of nesting, with 1 number of
preemption bits.
0b10: 4 levels of nesting, with 2 preemption
bits.
0b11: 8 levels of nesting, the number of
preemption bits is 3.
Note: This status is valid only for V4F.

0

1 INESTEN MRW
Interrupt nesting enable.
0: Interrupt nesting function off.
1: Interrupt nesting function enabled.

0

0 HWSTKEN MRW
HPE enable.
0: HPE function off.
1: HPE function enabled.

0

Machine Mode Exception Base Address Register (mtvec)

Name CSR Address Access Description Reset value
mtvec 0x305 MRW Exception base address register 0x00000000

Its folks are defined as.

Bit Name Access Description Reset value
[31:2] BASEADDR[31:2] MRW The interrupt vector table base address 0

1 MODE1 MRW Interrupt vector table identifies patterns. 0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 17

0: Identification by jump instruction,
limited range, support for non-jump
instructions.
1: Identify by absolute address, support
full range, but must jump.

0 MODE0 MRW

Interrupt or exception entry address mode
selection.
0: Use of the uniform entry address.
1: Address offset based on interrupt
number *4.

0

For MCU of V4 series microprocessors, MODE[1:0]=11 is configured in the startup file by default, i.e. the
vector table uses the absolute address of the interrupt function and the entry of the exception or interrupt is
offset according to the interrupt number *4.

3.3 Interrupt Nesting
In conjunction with the Interrupt System Control Register INTSYSCR (CSR address: 0x804) and the Interrupt
Priority Register PFIC_IPRIOR, nesting of interrupts can be allowed to occur. Enable nesting and configure
the nesting depth in the interrupt system control register (V4 series MCUs are configured in the startup file),
and configure the priority of the corresponding interrupt. The smaller the priority value, the higher the priority.
The smaller the value of the preemption bit, the higher the preemption priority. If there are interrupts hanging
at the same time under the same preemption priority, the microprocessor responds to the interrupt with the
lower priority value (higher priority) first.

3.4 Hardware Prologue/Epilogue (HPE)
When an exception or interrupt occurs, the microprocessor stops the current program flow and shifts to the
execution of the exception or interrupt handling function, the site of the current program flow needs to be
saved. After the exception or interrupt returns, it is necessary to restore the site and continue the execution of
the stopped program flow. For V4 series microprocessors, the "site" here refers to all the Caller Saved registers
in Table 1-2.

The V4 series microprocessors support hardware single cycle automatic saving of 16 of the shaped Caller
Saved registers to an internal stack area that is not visible to the user. When an exception or interrupt returns,
the hardware single cycle automatically restores data from the internal stack area to the 16 shaped registers.
The hardware stack supports nesting with a maximum nesting depth of 3 levels. After a hardware stack
overflow, if a higher priority interrupt is still allowed to execute, the "field" is saved to the user stack area.

When the nesting depth of interrupts allowed by the configuration is greater than the hardware stack depth,
the interrupt response can be turned off after the hardware stack overflow is set by bit 4 of the interrupt system
control register INTSYSCR, i.e., the maximum nesting depth is 3 levels, all using the hardware stack. If the
interrupt continues to execute after allowing the hardware stack overflow, the priority of the interrupt function
using hardware stack needs to be set to the lowest three levels.

A schematic of the microprocessor pressure stack is shown in the following figure.

Figure 3-1 Schematic diagram of pressure stack

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 18

TOP

BOTTOM

Main

IRQ1 IRQ2 IRQ3 IRQ4

RAM

Internal Hardware Stack

Software
PUSH

Software
POP

Hardware
PUSH

Hardware
POP

Hardware
PUSH

Hardware
POP

Hardware
PUSH

Hardware
POP

X1
X5-7

X10-11
X12-17
X28-31

Single cycle
 PUSH or POP

X1
X5-7

X10-11
X12-17
X28-31

Single cycle
 PUSH or POP

X1
X5-7

X10-11
X12-17
X28-31

Single cycle
 PUSH or POP

Priority Higher

Note: 1. Hardware pressure stack depth may vary from model to model.

2.Interrupt functions using the hardware stack need to be compiled using MRS or its provided toolchain
and the interrupt functions need to be declared with__attribute__((interrupt("WCH-Interrupt-fast"))).

3.If hardware floating point is used, the interrupt function with hardware stack declaration, the floating-
point registers are still saved and restored by the compiler in software, and they are saved to the user stack
area (RAM).
4.The interrupt function using stack push is declared by__attribute__((interrupt())).

3.5 Vector Table Free (VTF)
The Programmable Fast Interrupt Controller (PFIC) provides two VTF channels, i.e., direct access to the
interrupt function entry without going through the interrupt vector table lookup process.
The PFIC responds to fast interrupts and VTF as shown in Figure 3-2 below.

Figure 3-2 Schematic diagram of programmable fast interrupt controller

...

BLE
ETH
USB

...

Other

Peripherals

EXC

PFIC

id_0

id_1

id_2

...

id_n-1

id_n

RISC-V CORE

 VTF(IRQn,addr)
IRQ

...
...

Handler_addr

Code

(VTF: Vector table free)

“j”o r“Handler_addr”

...
...

Vector Table

 Fast(id_num)

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 19

Chapter 4 Physical Memory Protection (PMP)

In order to improve system security, the V4 series microprocessors are designed with Physical Memory
Protection (PMP) modules in accordance with the RISC-V architecture standard. It supports access rights
management for up to 4 physical regions. The PMP module is always in effect in user mode, and optionally in
machine mode through the Lock (L) attribute.

The PMP module includes four sets of 8-bit configuration registers (one set of 32-bit) and four sets of address
registers, all of which need to be accessed in machine mode using the CSR instruction.

Note: The number of protected areas supported by PMP may vary from one microprocessor model to another,
as well as the number supported by the pmpcfg<n> and pmpaddr<i> registers, as detailed in Table 1-1.

4.1 PMP Register Sets
The list of CSR registers supported by the V4 microprocessor PMP module is shown in Table 4-1 below.

Table 4-1 PMP module register sets
Name CSR address Access Description Reset value

pmpcfg0 0x3A0 MRW PMP configuration register 0 0x00000000
pmpaddr0 0x3B0 MRW PMP address register 0 0x00000000
pmpaddr1 0x3B1 MRW PMP address register 1 0x00000000
pmpaddr2 0x3B2 MRW PMP address register 2 0x00000000
pmpaddr3 0x3B3 MRW PMP address register 3 0x00000000

4.2 pmp<i>cfg Register
pmpcfg<n>, the configuration registers of the PMP unit, each register contains four 8-bit pmp<i>cfg fields
corresponding to the configuration of the four regions. pmp<i>cfg indicates the configuration value of region
i. The format is shown in Table 4-2 below.

Table 4-2 pmpcfg0 register
31 24 23 16 15 8 7 0

pmp3cfg pmp2cfg pmp1cfg pmp0cfg pmpcfg0

The pmp<i>cfg is used to configure area i. Its bit definitions are described in detail in Table 4-3 below.

Table 4-3 pmp<i>cfg Register
Bit Name Description

7 L
Lock enable, unlockable in Machine mode
0: Not locked.
1: Lock the relevant register.

[6:5] - Reserved

[4:3] A

Address alignment and protection area range selection.
00: OFF (PMP off)
01: TOR (Top Alignment Protection)
10: NA4 (fixed four-byte protection)
11: NAPOT (2(G+2) bytes protected, G≥1)

2 X
Executable property.
0: No execute permission

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 20

1: Have execute permission

1 W
Writable property.
0: No write permission
1: Have write permission

0 R
Readable Properties
0: No read permission
1: Have read permission

4.3 pmpaddr<i> Register
The pmpaddr<i> register is used to configure the address of area i. Standardly defined in the RV32 architecture,
it is the encoding of the high 32 bits of a 34-bit physical address in the format shown in Table 4-4 below. the
entire physical address space of the V4 microprocessor is 4G, so the high two bits of this register are not used.

Table 4-4 pmpaddr<i> registers
31 0

address[33:2]

When NAPOT is selected, the low bit of the address register is also used to indicate the size of the current
protection area, as shown in the table below, where "y" is a bit of the register.

Table 4-5 PMP configuration and address registers and protection area relationship table
pmpaddr pmpcfg.A Matching base address and size

yyyy…yyyy NA4 Base address "yy…yyyy00", 4-byte area protection
yyyy…yyy0 NAPOT Base address "yy…yyyy000", 8- byte area protection
yyyy…yy01 NAPOT Base address "yy…yyyy0000", 16- byte area protection
yyyy…y011 NAPOT Base address "yy…yyyy00000", 32- byte area protection

… … …
yyy01…111 NAPOT Base address "y0…000000", 231- byte area protection
yy011…111 NAPOT The entire 232-byte area is protected

4.4 Protection Mechanism
X/W/R in pmp<i>cfg is used to set the protection permissions for region i. Violation of the relevant
permissions will cause the corresponding exceptions.
(1) When an attempt is made to fetch an instruction in a PMP area that does not have execution privileges, a
fetch instruction access error exception (mcause=1) will be raised.
(2) When attempting to write data in a PMP area without write permission, a store instruction access error
exception (mcause=7) will be raised.
(3) When attempting to read data in a PMP area without read-out permission, a load instruction access error
exception (mcause=5) will be raised.

A in pmp<i>cfg is used to set the protection range and address alignment for region i. For the A_ADDR ≤
region<i> < B_ADDR region for memory protection (both A_ADDR and B_ADDR are required to be 4-byte
aligned).
(1) If B_ADDR - A_ADDR == 22, then the NA4 method is used.
(2) If B_ADDR - A_ADDR == 2(G+2), G ≥ 1, and A_ADDR is 2(G+2) aligned then the NAPOT method is used.
(3) Otherwise, the TOP method is used.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 21

Table 4-6 PMP address matching method
A value Name Description

0b00 OFF No area to protect

0b01 TOR

Top Aligned Area Protection.
pmp<i> cfg under pmpaddri-1 ≤ region<i> ＜pmpaddri;
pmpaddri-1 = A_ADDR >> 2.
pmpaddri = B_ADDR >> 2.
Note: If area 0 of PMP is configured as TOR mode (i=0), the lower boundary of the
protection area is 0 address, i.e. 0 ≤ addr < pmpaddr0, all within the matching
range.

0b10 NA4
Fixed 4-byte area protection.
pmp<i>cfg under pmpaddri as the starting address of the 4-byte pmpaddri =
A_ADDR>>2.

0b11 NAPOT
Protect the 2(G+2) region with G ≥ 1, when A_ADDR is 2(G+2) aligned.
pmpaddri = ((A_ADDR|(2(G+2)-1)) &~(1<<G+1))>>2.

The L bit in pmp<i>cfg is used to lock the PMP entry. After locking, the configuration register pmp<i>cfg and
the address register pmpaddr<i> will not be able to be modified. If A in pmp<i>cfg is set to TOR mode,
pmpaddr<i-1> will also not be modified. when L is set, the X/W/R permissions defined in pmp<i>cfg are also
valid for machine mode, and when L is cleared, X/W/R is only valid for user mode, and L is cleared only after
system reset.

QingKe V4 series microprocessors support protection of multiple zones. When the same operation matches
multiple zones at the same time, the zone with the smaller number is matched first.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 22

Chapter 5 System Timer (SysTick)

QingKe V4 series microprocessor is designed with a 64-bit plus counter (SysTick) inside, and its clock source
can be the system clock or 8 divisions of the system clock. It can provide time base for real time operating
system, provide timing, measure time, etc. The timer involves 6 registers and maps to the peripheral address
space for controlling the SysTick, as shown in Table 5-1 below.

Table 5-1 SysTick register list
Name Access address Description Reset value

STK_CTLR 0xE000F000 System count control register 0x00000000
STK_SR 0xE000F004 System count status register 0x00000000

STK_CNTL 0xE000F008 System counter low register 0x00000000
STK_CNTH 0xE000F00C System counter high register 0x00000000

STK_CMPLR 0xE000F010 System count comparison value low register 0x00000000
STK_CMPHR 0xE000F014 System count comparison value high register 0x00000000

Each register is described in detail as follows.

System Count Control Register (STK_CTLR)

Table 5-2 SysTick control registers
Bit Name Access Description Reset value

31 SWIE RW

Software interrupt trigger enable (SWI).
1: Triggering software interrupts.
0: Turn off the trigger.
After entering software interrupt, software clear 0
is required, otherwise it is continuously triggered.

0

[30:6] Reserved RO Reserved 0

5 INIT W1

Counter initial value update.
1: Updated to 0 on up counts, updated to the
comparison value on down counts.
0: Invalid.

4 MODE RW
Counting mode.
1: Counting down.
0: Counting up.

3 STRE RW

Auto Reload Count enable bit.
1: Re-counting from 0 after counting up to the
comparison value, and re-counting from the
comparison value after counting down to 0.
0: Continue counting up/down.

2 STCLK RW
Counter clock source selection bit.
1: HCLK for time base.
0: HCLK/8 for time base.

1 STIE RW
Counter interrupt enable control bit.
1: Enable counter interrupts.
0: Turn off the counter interrupt.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 23

0 STE RW

System counter enable control bit.
1: Start the system counter STK.
0: Turn off the system counter STK and the
counter stops counting.

System Count Status Register (STK_SR)

Table 5-3 SysTick status register
Bit Name Access Description Reset value

[31:1] Reserved RO Reserved 0

0 CNTIF RW

Counting value comparison flag, write 0 clear,
write 1 invalid:
1: Count up to reach the comparison value and
count down to 0.
0: The comparison value is not reached.

0

System Counter Low Register (STK_CNTL)

Table 5-4 SysTick counter low register
Bit Name Access Description Reset value

[31:0] CNTL RW The current counter count value is 32 bits lower. 0
Note: The register STK_CNTL and the register STK_CNTH together constitute the 64-bit system counter.

System Counter High Register (STK_CNTH)

Table 5-5 SysTick counter high register
Bit Name Access Description Reset value

[31:0] CNTH RW The current counter count value is 32 bits higher. 0
Note: The register STK_CNTL and the register STK_CNTH together constitute the 64-bit system counter.

System Count Comparison Value Low Register (STK_CMPLR)

Table 5-6 SysTick count comparison value low register
Bit Name Access Description Reset value

[31:0] CMPL RW Set the counter comparison value 32 bits lower. 0
Note: The register STK_CMPLR and the register STK_CMPHR together constitute the 64-bit counter
comparison value.

System Count Comparison Value High Register (STK_CMPHR)

Table 5-7 SysTick count comparison value high register
Bit Name Access Description Reset value

[31:0] CMPH RW Set the counter comparison value 32 bits higher. 0
Note: The register STK_CMPLR and the register STK_CMPHR together constitute the 64-bit counter
comparison value.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 24

Chapter 6 Processor Low-power Settings

QingKe V4 series microprocessors support sleep state via WFI (Wait For Interrupt) instruction to achieve low
static power consumption. Together with PFIC's system control register (PFIC_SCTLR), various Sleep modes
and WFE instructions can be implemented.

6.1 Enter Sleep
QingKe V4 series microprocessors can go to sleep in two ways, Wait for Interrupt (WFI) and Wait For Event
(WFE). The WFI method means that the microprocessor goes to sleep, waits for an interrupt to wake up, and
then wakes up to the corresponding interrupt to execute. The WFE method means that the microprocessor goes
to sleep, waits for an event to wake up, and wakes up to continue executing the previously stopped program
flow.

The standard RISC-V supports WFI instruction, and the WFI command can be executed directly to enter sleep
by WFI method. For the WFE method, the WFITOWFE bit in the system control register PFIC_SCTLR is
used to control the subsequent WFI commands as WFE processing to achieve the WFE method to enter sleep.

The depth of sleep is controlled according to the SLEEPDEEP bit in PFIC_SCTLR.
 If the SLEEPDEEP in PFIC_SCTLR register is cleared to zero, the microprocessor enters Sleep mode

and the internal unit clock is allowed to be turned off except for SysTick and part of the wake-up logic.
 If SLEEPDEEP in the PFIC_SCTLR register is set, the microprocessor enters Deep sleep mode and all

cell clocks are allowed to be turned off.
When the microprocessor is in Debug mode, it is not possible to enter any kind of Sleep mode.

6.2 Sleep Wakeup
QingKe V4 series microprocessors can be woken up after sleep due to WFI and WFE in the following ways.
 After the WFI method goes to sleep, it can be awakened by
(1) The microprocessor can be woken up by the interrupt source responded by the interrupt controller. After

waking up, the microprocessor executes the interrupt function first.
(2) Enter Sleep mode, debug request can make the microprocessor wake up and enter deep sleep, debug

request cannot wake up the microprocessor.

 After going to sleep in the WFE mode, the microprocessor can be woken up by the following.
(1) Internal or external events, when there is no need to configure the interrupt controller, wake up and

continue to execute the program.
(2) If an interrupt source is enabled, the microprocessor is woken up when an interrupt is generated, and after

waking up, the microprocessor executes the interrupt function first.
(3) If the SEVONPEND bit in PFIC_SCTLR is configured, the interrupt controller does not enable the

interrupt under, but when a new interrupt pending signal is generated (the previously generated pending
signal does not take effect), it can also make the microprocessor wake up, and the corresponding interrupt
pending flag needs to be cleared manually after waking up.

(4) Enter Sleep mode debug request can make the microprocessor wake up and enter deep sleep, debug request
cannot wake up the microprocessor.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 25

In addition, the state of the microprocessor after wake-up can be controlled by configuring the SLEEPONEXIT
bit in PFIC_SCTLR.
 SLEEPONEXIT is set and the last level interrupt return instruction (mret) will trigger the WFI mode

sleep.

 SLEEPONEXIT is cleared with no effect.
Various MCU products equipped with V4 series microprocessors can adopt different sleep modes, turn off
different peripherals and clocks, implement different power management policies and wake-up methods
according to different configurations of PFIC_SCTLR, and realize various low-power modes.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 26

Chapter 7 Debug Support

QingKe V4 series microprocessors include a hardware debug module that supports complex debugging
operations. When the microprocessor is suspended, the debug module can access the microprocessor's GPRs,
CSRs, Memory, external devices, etc. through abstract commands, program buffer deployment instructions,
etc. The debug module can suspend and resume the microprocessor's operation.

The debug module follows the RISC-V External Debug Support Version0.13.2 specification, detailed
documentation can be downloaded from RISC-V International website.

7.1 Debug Module
The debug module inside the microprocessor, capable of performing debug operations issued by the debug
host, includes.
 Access to registers through the debug interface
 Reset, suspend and resume the microprocessor through the debug interface
 Read and write memory, instruction registers and external devices through the debug interface
 Deploy multiple arbitrary instructions through the debug interface
 Set software breakpoints through the debug interface
 Set hardware breakpoints through the debug interface
 Support for automatic execution of abstract commands
 Support single-step debugging
Note: Hardware breakpoints are only supported by the V4C, V4F, and V4J microprocessors.

The internal registers of the debugging module use a 7-bit address code, and the following registers are
implemented inside QingKe V4 series microprocessors.

Table 7-1 Debug module register List
Name Access address Description
data0 0x04 Data register 0, can be used for temporary storage of data
data1 0x05 Data register 1, can be used for temporary storage of data

dmcontrol 0x10 Debug module control register
dmstatus 0x11 Debug module status register
hartinfo 0x12 Microprocessor status register

abstractcs 0x16 Abstract command status register
command 0x17 Abstract command register

progbuf0-7 0x20-0x27 Instruction cache registers 0-7
haltsum0 0x40 Pause status register

The debug host can control the microprocessor's suspend, resume, reset, etc. by configuring the dmcontrol
register. The RISC-V standard defines three types of abstract commands: access register, fast access, and
access memory. QingKe V4 microprocessor supports two of them, and does not support fast access. The
abstract commands can be used to access registers (GPRs, CSRs, FPRs), sequential access to memory, etc.

The debug module implements eight instruction cache registers progbuf0-7, and the debug host can cache
multiple instructions (which can be compressed instructions) to the buffer, and can choose to continue
executing the instructions in the instruction cache registers after executing the abstract command, or execute

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 27

the cached instructions directly. Note that the last instruction in the progbufs needs to be an "ebreak" or
"c.ebreak" instruction. Access to storage, peripherals, etc. is also possible through abstract commands and
instructions cached in the progbufs.

Each register is described in detail as follows.
Data Register 0 (data0)

Table 7-2 data0 register definition
Bit Name Access Description Reset Value

[31:0] data0 RW Data register 0, used for temporary storage of data 0

Data Register 1 (data1)

Table 7-3 data1 register definition
Bit Name Access Description Reset Value

[31:0] data1 RW Data register 1, used for temporary storage of data 0

Debug Module Control Register (dmcontrol)
This register controls the pause, reset, and resume of the microprocessor. Debug host write data to the
corresponding field to achieve pause (haltreq), reset (ndmreset), resume (resumereq). You describe into the
following.

Table 7-4 dmcontrol register definition
Bit Name Access Description Reset Value

31 haltreq WO
0: Clear the pause request
1: Send a pause request

0

30 resumereq W1

0: Invalid
1: Restore the current microprocessor
Note: Write 1 is valid and the hardware is cleared
after the microprocessor is recovered

0

29 Reserved RO Reserved 0

28 ackhavereset W1
0: Invalid
1: Clear the haverest status bit of the
microprocessor

0

[27:2] Reserved RO Reserved 0

1 ndmreset RW
0: Clear reset
1: Reset the entire system other than the debug
module

0

0 dmactive RW
0: Reset debug module
1: Debug module works properly

0

Debug Module Status Register (dmstatus)
This register is used to indicate the status of the debug module and is a read-only register with the following
description of each bit.

Table 7-5 dmstatus register definition
Bit Name Access Description Reset Value

[31:20] Reserved RO Reserved 0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 28

19 allhavereset RO
0: Invalid
1: Microprocessor reset

0

18 anyhavereset RO
0: Invalid
1: Microprocessor reset

0

17 allresumeack RO
0: Invalid
1: Microprocessor reset

0

16 anyresumeack RO
0: Invalid
1: Microprocessor reset

0

[15:14] Reserved RO Reserved 0

13 allavail RO
0: Invalid
1: Microprocessor is not available

0

12 anyavail RO
0: Invalid
1: Microprocessor is not available

0

11 allrunning RO
0: Invalid
1: Microprocessor is running

0

10 anyrunning RO
0: Invalid
1: Microprocessor is running

0

9 allhalted RO
0: Invalid
1: Microprocessor is in suspension

0

8 anyhalted RO
0: Invalid
1: Microprocessor out of suspension

0

7 authenticated RO
0: Authentication is required before using the
debug module
1: The debugging module has been certified

0x1

[6:4] Reserved RO Reserved 0

[3:0] version RO
Debugging system support architecture version
0010: V0.13

0x2

Microprocessor Status Register (hartinfo)
This register is used to provide information about the microprocessor to the debug host and is a read-only
register with each bit described as follows.

Table 7-6 hartinfo register definition
Bit Name Access Description Reset Value

[31:24] Reserved RO Reserved 0
[23:20] nscratch RO Number of dscratch registers supported 0x3
[19:17] Reserved RO Reserved 0

16 dataaccess RO
0: Data register is mapped to CSR address
1: Data register is mapped to memory address

0x1

[15:12] datasize RO Number of data registers 0x2

[11:0] dataaddr RO
Data register data0 offset address, the base address
is 0xe0000000

0x380

Abstract Command Control and Status Registers (abstractcs)
This register is used to indicate the execution of the abstract command. The debug host can read this register
to know whether the last abstract command is executed or not, and can check whether an error is generated

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 29

during the execution of the abstract command and the type of the error, which is described in detail as follows.

Table 7-7 abstractcs register definitions
Bit Name Access Description Reset Value

[31:29] Reserved RO Reserved 0

[28:24] progbufsize RO
Indicates the number of program buffer program
cache registers

0x8

[23:13] Reserved RO Reserved 0

12 busy RO
0: No abstract command is executing
1: There are abstract commands being executed
Note: After execution, the hardware is cleared.

0

11 Reserved RO Reserved 0

[10:8] cmder RW

Abstract command error type
000: No error
001: abstract command execution to write to
command, abstractcs, abstractauto registers or read
and write to data and progbuf registers
010: Does not support current abstract command
011: Execution of abstract command with exception
100: The microprocessor is not suspended or
unavailable and cannot execute abstract commands
101: Bus error
110: Parity bit error during communication
111: Other errors
Note: For bit writing 1 is used to clear the zero.

0

[7:4] Reserved RO Reserved 0
[3:0] datacount RO Number of data registers 0x2

Abstract Command Register(command)
The debug host can access the GPRs, FPRs, and CSRs registers inside the microprocessor by writing different
configuration values in the abstract command registers.

When accessing the registers, the command register bits are defined as follows.

Table 7-8 Definition of command register when accessing registers
Bit Name Access Description Reset Value

[31:24] cmdtype WO

Abstract command type
0: Access register
1: Quick access (not supported)
2: Access to memory (not supported)

0

23 Reserved WO Reserved 0

[22:20] aarsize WO

Access register data bit width
000: 8-bit
001: 16-bit
010: 32-bit
011: 64-bit (not supported)

0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 30

100: 128-bit (not supported)
Note: When accessing floating-point registers
FPRs, only 32-bit access is supported.

19 aarpostincrement WO
0: No effect
1: Automatically increase the value of regno after
accessing the register

0

18 postexec WO
0: No effect
1：Execute the abstract command and then execute
the command in progbuf

0

17 transfer WO
0: Do not execute the operation specified by write
1: Execute the manipulation specified by write

0

16 write WO
0: Copy data from the specified register to data0
1: Copy data from data0 register to the specified
register

0

[15:0] regno WO

Specify access registers
0x0000-0x0fff are CSRs
0x1000-0x101f are GPRs
0x1020-0x103f are FPRs

0

When accessing the memory, the command register bits are defined as follows.

Table 7-9 Definition of command register when accessing memory

Bit Name
Acce

ss
Description Reset Value

[31:24] cmdtype WO

Abstract command type
0: Access register
1: Quick access (not supported)
2: Access to memory

0

23 aamvirtual WO
0: Access to physical address
1: Access to virtual addresses

0

[22:20] aarsize WO

Access register data bit width
000: 8-bit
001: 16-bit
010: 32-bit
011: 64-bit (not supported)
100: 128-bit (not supported)

0

19 aarpostincrement WO

0: No effect
1: The address of the data1 register is incremented by the
number of bytes corresponding to the bit width of the
aamsize configuration after successful access to memory
aamsize=0, access by byte, data1 plus 1 aamsize=1, by
half-word range, data1 plus 2
aamsize=2, access by word, data1 plus 4

0

18 postexec WO
0: No effect
1：Execute the abstract command and then execute the
command in progbuf

0

17 Reserved RO Reserved 0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 31

16 write WO
0: Copy data from the specified register to data0
1: Copy data from data0 register to the specified register

0

[15:14] target-specific WO

Read and write method definition
For writing.
00, 01: Write directly to memory
10: write the result to memory after the data in data0 and
the data bits in the memory or (only word access is
supported)
11: write the result to memory after the data in data0 and
the data bits in memory (only word access is supported)
For reading.
00, 01, 10, 11: Read directly to memory

0

[13:0] Reserved RO Reserved 0

Abstract Command Auto-execution Register (abstractauto)
This register is used to configure the debug module so that abstract commands can be executed again when
reading and writing to the progbufx and datax of the debug module, which is described as follows.

Table 7-10 abstractauto register definition
Bit Name Access Description Reset Value

[31:16] autoexecprogbuf RW

If a location 1, the corresponding read or write to
progbufx will cause the abstract command in the
command register to be executed again
Note: The V4 series is designed with 8 progbuf,
corresponding to bits [23:16]

0

[15:12] Reserved RO Reserved 0

[11:0] autoexecdata RW

If a position 1, the corresponding read or write to
the datax register will cause the abstract command
in the command register to be executed again
Note: V4 series design 2 data registers,
corresponding to bits [1:0]

0

Instruction Cache Register (progbufx)
This register is used to store any instruction, deploy the corresponding operation, including 8, need to pay
attention to the last execution needs to be "ebreak" or "c.ebreak".

Table 7-11 progbuf register definition
Bit Name Access Description Reset Value

[31:0] progbuf RW
Instruction encoding for cache operations, which
may include compression instructions

0

Pause Status Register (haltsum0)
This register is used to indicate whether the microprocessor is suspended or not. Each bit indicates the
suspended status of a microprocessor, and when there is only one core, only the lowest bit of this register is
used to indicate it.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 32

Table 7-12 haltsum0 register definition

Bit Name Access Description Reset Value
[31:1] Reserved RO Reserved 0

0 haltsum0 RO
0: Microprocessor operates normally
1: Microprocessor stop

0

In addition to the above-mentioned registers of the debug module, the debug function also involves some CSR
registers, mainly the debug control and status register dcsr and the debug instruction pointer dpc, which are
described in detail as follows.

Debug Control and Status Register (dcsr)

Table 7-13 dcsr register definition

Bit Name Access Description Reset Value

[31:28] xdebugver DRO

0000: External debugging is not supported
0100: Support standard external debugging
1111: External debugging is supported, but does not meet
the specification

0x4

[27:16] Reserved DRO Reserved

15 ebreakm DRW

0: The ebreak command in Machine mode behaves as
described in the privilege file
1: The ebreak command in Machine mode can enter
Debug mode

0

[14:13] Reserved DRO Reserved 0

12 ebreaku DRW

0: The ebreak command in User mode behaves as
described in the privilege file
1: The ebreak command in User mode can enter debug
mode

0

11 stepie DRW
0: Interrupts are disabled under single-step debugging
1: Enable interrupts under single-step debugging

0

10 Reserved DRO Reserved 0

9 stoptime DRW
0: System timer running in Debug mode
1: System timer stop in Debug mode

0

[8:6] cause DRO

Reasons for entering debugging
001: Entering debugging in the form of ebreak command
(priority 3)
010: Entering debugging in the form of trigger module
(priority 4, the highest)
011: Entering debugging in the form of pause request
(priority 1)
100: debugging in the form of single-step debugging
(priority 0, the lowest)
101: enter debug mode directly after microprocessor reset
(priority 2)

0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 33

Others: Reserved
[5:3] Reserved DRO Reserved 0

2 step DRW
0: Turn off single-step debugging
1: Enable single-step debugging

0

[1:0] prv DRW

Privilege mode
00: User mode
01: Supervisor mode (not supported)
10: Reserved
11: Machine mode
Note: Record the privileged mode when entering debug
mode, the debugger can modify this value to modify the
privileged mode when exiting debug

0

Debug Mode Program Pointer (dpc)
This register is used to store the address of the next instruction to be executed after the microprocessor enters
Debug mode, and its value is updated with different rules depending on the reason for entering debug. dpc
register is described in detail as follows.

Table 7-14 dpc register definitions
Bit Name Access Description Reset Value

[31:0] dpc DRW Instruction address 0

The rules for updating the registers are shown in the following table.

Table 7-15 dpc update rules
Enter the debugging method dpc Update rules

ebreak Address of the Ebreak instruction
single step Instruction address of the next instruction of the current instruction

trigger module Temporarily not supported
halt request Address of the next instruction to be executed when entering Debug

7.2 Debug Interface
Different from the standard RISC-V defined JTAG interface, QingKe V4 series microprocessor using single /
two-wire debugging interface, follow the WCH debugging interface protocol. The two-wire interface of V4A
follows the interface protocol V1.0, while V4B, V4C, V4F, V4J follow the interface protocol V1.1. The
debugging interface is responsible for the communication between the debug host and the debug module, and
realizes the read/write operation of the debug host on the registers of the debug module. WCH designed
WCH_Link and open source its schematic and program binary files, which can be used for debugging all
RISC-V architecture microprocessors.

The specific debugging interface protocol refers to WCH debugging protocol manual.

Note: Only V4J supports both 1-wire and 2-wire debug interfaces.

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 34

Chapter 8 CSR Register Lists

The RISC-V architecture defines a number of Control and Status Registers (CSRs) for controlling and
recording the operating status of the microprocessor. Some of the CSRs have been introduced in the previous
section, and this chapter will detail the CSR registers implemented in the QingKe V4 series microprocessors.

8.1 CSR Register Lists
Table 8-1 List of Microprocessor CSR Registers

Type Name CSR Address Access Description

RISC-V
Standard CSR

marchid 0xF12 MRO Architecture number register
mimpid 0xF13 MRO Hardware implementation numbering register
mstatus 0x300 MRW Status register

misa 0x301 MRW Hardware instruction set register
mtvec 0x305 MRW Exception base address register

mscratch 0x340 MRW Machine mode staging register
mepc 0x341 MRW Exception program pointer register

mcause 0x342 MRW Exception cause register
mtval 0x343 MRW Exception value register

pmpcfg<i> 0x3A0+i MRW PMP unit configuration register
pmpaddr<i> 0x3B0+i MRW PMP unit address register

fflags 0x001 URW Floating-point exception flag register
frm 0x002 URW Floating-point rounding mode register
fcsr 0x003 URW Floating-point control and status register
dcsr 0x7B0 DRW Debug control and status registers
dpc 0x7B1 DRW Debug mode program pointer register

dscratch0 0x7B2 DRW Debug mode staging register 0
dscratch1 0x7B3 DRW Debug mode staging register 1

Vendor-
defined CSRs

gintenr 0x800 URW Global interrupt enable register
intsyscr 0x804 URW Interrupt system control register
corecfgr 0xBC0 MRW Microprocessor configuration register

cstrcr 0xBC2 MRW Cache policy configuration register
cpmpocr 0xBC3 MRW Cache policy overrides PMP control registers

cmcr 0xBD0 MWO Cache operation control register
cinfor 0xFC0 MRO Cache information register

8.2 RISC-V Standard CSR Registers
Architecture Number Register (marchid)
This register is a read-only register to indicate the current microprocessor hardware architecture number, which
is mainly composed of vendor code, architecture code, series code, and version code. Each of them is defined
as follows.

Table 8-2 marchid register definition
Bit Name Access Description Reset Value
31 Reserved MRO Reserved 1

[30:26] Vender0 MRO
Manufacturer code 0
Fixed to the letter "W" code

0x17

[25:21] Vender1 MRO
Manufacturer code1
Fixed to the letter "C" code

0x03

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 35

[20:16] Vender2 MRO
Manufacturer code 2
Fixed to the letter "H" code

0x08

15 Reserved MRO Reserved 1

[14:10] Arch MRO
Architecture code
RISC-V architecture is fixed to the letter "V" code

0x16

[9:5] Serial MRO
Series code
QingKe V4 series, fixed to the number "4"

0x04

[4:0] Verision MRO
Version code
Can be the version "A", "B", "C", "F" and other
letters of the code

x

The manufacturer number and version number are alphabetic, and the series number is numeric. The coding
table of letters is shown in the following table.

Table 8-3 Alphabetic Mapping Table
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

For example, the QingKe V4F microprocessor, read the value of this register as: 0xDC68D886, which
corresponds to WCH-V4F.

Hardware Implementation Numbering Register (mimpid)
This register is mainly composed of vendor codes, each of which is defined as follows.

Table 8-4 mimpid Register Definition
Bit Name Access Description Reset Value
31 Reserved MRO Reserved 1

[30:26] Vender0 MRO
Manufacturer code 0
Fixed to the letter "W" code

0x17

[25:21] Vender1 MRO
Manufacturer code1
Fixed to the letter "C" code

0x03

[20:16] Vender2 MRO
Manufacturer code 2
Fixed to the letter "H" code

0x08

15 Reserved MRO Reserved 1
[14:1] Reserved MRO Reserved 0

0 Reserved MRO Reserved 1

Machine Mode Status Register (mstatus)
This register has been partially described in the previous section, and its folks are positioned as follows.

Table 8-5 mstatus Register Definition
Bit Name Access Description Reset Value

[31:15] Reserved MRO Reserved 0

[14:13] Reserved MRO

Floating-point unit status
FS FS Meaning
00 OFF
01 Initial
10 Clean
11 Dirty

0

[12:11] MPP MRW Privileged mode before entering break 0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 36

[10:8] Reserved MRO Reserved 0
7 MPIE MRW Interrupt enable state before entering interrupt 0

[6:4] Reserved MRO Reserved 0
3 MIE MRW Machine mode interrupt enable 0

[2:0] Reserved MRO Reserved 0

The FS field is used to describe and maintain the floating-point unit state, so this field is only meaningful on
the QingKe V4F microprocessor that contains the hardware floating point function. If the value is 0, it means
that the floating-point unit is off, and if the floating-point instruction is used at this time, an exception will be
triggered; if the value is 1 or 2, the field will be updated to 3 when the floating-point instruction is executed.
if the user does not expect to use the hardware floating point function when using the V4F microprocessor, the
two bits can be cleared manually in machine mode to turn off the hardware floating point and reduce power
consumption.

The MPP field is used to save the privileged mode before entering the exception or interrupt, and is used to
restore the privileged mode after exiting the exception or interrupt. MIE is the global interrupt enable bit, and
when entering the exception or interrupt, the value of MPIE is updated to the value of MIE, and it should be
noted that in the QingKe V4 series microprocessors, MIE will not be updated to 0 before the last level of
nested interrupts to ensure that the interrupt nesting in machine mode continues to be executed. When an
exception or interrupt is exited, the microprocessor reverts to the machine mode saved by MPP and the MIE
is restored to the MPIE value.

QingKe V4 microprocessor supports Machine mode and User mode. If you need to make the microprocessor
work only in Machine mode, you can set the MPP to 0x3 in the initialization of the startup file, i.e. after
returning, it will always remain in Machine mode.

Hardware Instruction Set Register (misa)
This register is used to indicate the architecture of the microprocessor and the supported instruction set
extensions, each of which is described as follows.

Table 8-6 misa Register Definition
Bit Name Access Description Reset Value

[31:30] MXL MRO

Machine word length
1:32
2:64
3:128

1

[29:26] Reserved MRO Reserved 0
[25:0] Extensions MRO Instruction set extensions x

The MXL is used to indicate the word length of the microprocessor, QingKe V4 are 32-bit microprocessors,
the domain is fixed to 1. Extensions are used to indicate that the microprocessor supports extended instruction
set details, each indicates a class of extensions, its detailed description is shown in the following table.

Table 8-7 Instruction Set Extension Details
Bit Name Description
0 A Atomic extension
1 B Tentatively reserved for Bit-Manipulation extension
2 C Compressed extension

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 37

3 D Double-precision floating-point extension
4 E RV32E base ISA
5 F Single-precision floating-point extension
6 G Additional standard extensions present
7 H Hypervisor extension
8 I RV32I/64I/128I base ISA
9 J Tentatively reserved for Dynamically Translated Languages extension
10 K Reserved
11 L Tentatively reserved for Decimal Floating-Point extension
12 M Integer Multiply/Divide extension
13 N User-level interrupts supported
14 O Reserved
15 P Tentatively reserved for Packed-SIMD extension
16 Q Quad-precision floating-point extension
17 R Reserved
18 S Supervisor mode implemented
19 T Tentatively reserved for Transactional Memory extension
20 U User mode implemented
21 V Tentatively reserved for Vector extension
22 W Reserved
23 X Non-standard extensions present
24 Y Reserved
25 Z Reserved

For example, for the QingKe V4F microprocessor, the register value is 0x40901125, which means that the
supported instruction set architecture is RV32IMACF, as well as the non-standard extension X, and has a user
mode implementation.

Machine Mode Exception Base Address Register (mtvec)
This register is used to store the base address of the exception or interrupt handler and the lower two bits are
used to configure the mode and identification method of the vector table as described in Section 3.2.

Machine Mode Staging Register (mscratch)

Table 8-8 mscratch register definitions
Bit Name Access Description Reset Value

[31:0] mscratch MRW Data storage 0
This register is a 32-bit readable and writable register in machine mode for temporary data storage. For
example, when entering an exception or interrupt handler, the user stack pointer SP is stored in this register
and the interrupt stack pointer is assigned to the SP register. After exiting the exception or interrupt, restore
the value of user stack pointer SP from mscratch. That is, the interrupt stack and user stack can be isolated.

Machine Mode Exception Program Pointer Register (mepc)

Table 8-9 mepc register definitions
Bit Name Access Description Reset Value

[31:0] mepc MRW Exception procedure pointer 0
This register is used to save the program pointer when entering an exception or interrupt. It is used to save the

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 38

instruction PC pointer before entering an exception when an exception or interrupt is generated, and mepc is
used as the return address when the exception or interrupt is handled and used for exception or interrupt return.
However, it is important to note that.
 When an exception occurs, mepc is updated to the PC value of the instruction currently generating the

exception.
 When an interrupt occurs, mepc is updated to the PC value of the next instruction.
When you need to return an exception after processing the exception, you should pay attention to modifying
the value of the mepc, and more details can be found in Chapter 2 Exceptions.

Machine Mode Exception Cause Register (mcause)

Table 8-10 mcause register definition
Bit Name Access Description Reset Value

31 Interrupt MRW
Interrupt indication field
0: Exception
1: Interruption

0

[30:0] Exception Code MRW Exception codes, see Table 2-1 for details 0
This register is mainly used to store the cause of the exception or the interrupt number of the interrupt. Its
highest bit is the Interrupt field, which is used to indicate whether the current occurrence is an exception or an
interrupt. The lower bit is the exception code, which is used to indicate the specific cause. Its details can be
found in Chapter 2 Exceptions.

Machine Mode Exception Value Register (mtval)

Table 8-11 mtval register definition
Bit Name Access Description Reset Value

[31:0] mtval MRW Exception value 0
This register is used to hold the value that caused the exception when an exception occurs. For details such as
the value and time of its storage, please refer to Chapter 2 Exceptions.

PMP Configuration Register (pmpcfg<i>)
This register is mainly used for the configuration of the physical memory protection unit. Every 8 bits of this
register is used to configure the protection of one area, refer to Chapter 4 for detailed definition.

PMP Configuration Register (pmpaddr<i>)
This register is mainly used for the address configuration of the physical memory protection unit, which is the
encoding of the high 32 bits of a 34-bit physical address, refer to Chapter 4 for the specific configuration
method.

Floating-point Control and Status Registers (fcsr)
This register exists only in microprocessors that support hardware floating point and is used to configure the
rounding mode for floating point calculations and to record floating point exception flags. Each of its digits is
defined as shown below.

Table 8-12 fcsr register definition
Bit Name Access Description Reset Value

[31:8] Reserved MRO Reserved 0
[7:5] FRM MRW Floating-point rounding mode 0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 39

4 NV MRW Illegal operation exception 0
3 DZ MRW De-zeroing exception 0
2 OF MRW Upper overflow exception 0
1 UF MRW Under overflow exception 0
0 NX MRW Non-precision exception 0

It should be noted that an exception generated by the floating-point unit does not trigger an exception interrupt,
but only sets the corresponding flag bit. The FRM field is used to configure the rounding mode of the floating-
point unit, and the supported rounding modes are shown in the following table.

Table 8-13 Rounding Mode
Rounding code Rounding mode Description

000 RNE Rounding to the nearest value, even values are preferred
001 RTZ Rounding to zero
010 RDN Rounding down (to -∞)
011 RUP Rounding up (to ∞)
100 RMM Round to the nearest value, first maximum
101 - Illegal value
110 - Illegal value
111 - Dynamic rounding

Floating-point Status Registers (fflags)
This register exists only in microprocessors that support hardware floating point. This register is the exception
flag bit field in fcsr, which is added in order to facilitate users to read and write exception flags directly and
independently using CSR instructions.

Rounding Mode Register (frm)
This register exists only in microprocessors that support hardware floating-point. This register is the rounding
mode field FRM in fcsr, which is added in order to facilitate the user to directly and independently configure
the rounding mode for floating point calculations using CSR instructions.

Debug Control and Status Register (dcsr)
This register is used to control and record the operation status of Debug mode, refer to section 7.1 for detailed
description.

Debug Mode Program Pointer Register (dpc)
This register is used to store the address of the next instruction to be executed after the microprocessor enters
Debug mode, and its value is updated with different rules depending on the reason for entering debug. Refer
to Section 7.1 for detailed description.

Debug Mode Staging Register (dscratch0-1)
This group of registers is used for temporary storage of data in Debug mode.

Table 8-14 dscratch0-1 register definitions
Bit Name Access Description Reset Value

[31:0] dscratch DRW Debug mode data staging value 0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 40

8.3 User-defined CSR Registers
Global Interrupt Enable Register (gintenr)
This register is used to control the enable and mask of global interrupt. The enable and mask of global interrupt
in Machine mode can be controlled by the MIE and MPIE bits in register mstatus, which cannot be operated
in User mode. The global interrupt enable register gintenr is the mapping of MIE and MPIE in mstatus, and
can be used to set and clear MIE and MPIE by operating gintenr in User mode.
Note: Global interrupts do not include non-maskable interrupts NMI and exceptions

Interrupt System Control Register (intsyscr)
This register is mainly used to configure the interrupt nesting depth, HPE and other related functions, as
described in Section 3.2.

Microprocessor Configuration Registers (corecfgr)
This register is mainly used to configure the microprocessor pipeline, instruction prediction and other related
features, and generally does not need to be operated. The relevant MCU products are configured with default
values in the startup file.

Cache Policy Configuration Register (cstrcr)
This register is mainly used to configure the policy and enable of the cache as shown in the following table:

Table 8-15 cstrcr register definitions
Bit Name Access Description Reset value

[31:26] Reserve MR0 Reserved 0

25 Icsramstren MRW
Enable caching of instructions in the SRAM area
0: Disable caching of instructions in the SRAM area
1: Allow caching of instructions in the SRAM area

0

24 Iccodestren MRW
Enable caching of instructions in the CODE area
0: Disable caching of instructions in the CODE area
1: Allow caching of instructions in the CODE area.

1

[23:2] Reserve MR0 Reserved 0

1 Icdisable MRW
Command cache disabled
0: Enable command cache function
1: Disable command cache function

1

0 Reserve MR0 Reserved 0

Cache Policy Override PMP Control Registers (cpmpocr)
When the instruction or data address and the address of the PMP channel control match, you can use this
register to configure is to execute the corresponding cache policy or the control policy of the PMP channel that
matches it. Every 4-bit group, a total of 8 groups, corresponding to a maximum of 8 PMP channels, the specific
number of channels related to the corresponding specific implementation. The specific definitions are shown
in the following table, where n denotes the PMP channel:

Table 8-16 cpmpocr register definitions
Bit Name Access Description Reset value

[4n+3:4n+1] Reserve MRO Reserved 0

4n IcPMPncach MRW
Cache policy override PMP channel n policy
enable
0: Disable cache policy override PMPn policy,

0

https://wch-ic.com

QingKeV4 Microprocessor Manual https://wch-ic.com

V1.4 41

execute the policy of the matching PMPn
1: Enable cache policy override PMPn policy,
enforcing the policy configured in the cache policy
configuration register cstrcr

Cache Operation Control Register (cmcr)

The cache operation control register is mainly used to clear or invalidate instructions or data in the cache.
Table 8-17 cmcr register definitions

Bit Name Access Description Reset value
[31:5] Vaddr MWO Address or index information for the operation 0
[4:3] Reserve MRO Reserved 0

2 IdxMode MWO

Indexing mode
0: Execute the operation with the index
information in the Vaddr value as the first address
1: Execute the operation with the Vaddr value as
the address information

0

[1:0] Opcode MWO
Operation code
00: Disable instruction cache
Other: Reserved

0

Cache Information Register (cinfor)

Used to indicate cache information, which is described in detail below:
Table 8-18 cinfor register definitions

Bit Name Access Description Reset value
[31:7] Reserve MRO Reserved 0

[6:5] Icway MRO

Instruction cache ways
00: 1-way
01: 2-way
10: 4-way
11: 8-way

0

[4:2] Icsize MRO

Command cache capacity information
000: No cache
001: 4KB
010: 8KB
011: 16KB
100: 32KB
101: 64KB
Others: Reserved

0

[1:0] Iclinesize MRO

Instruction cache line length
00: 8 bytes
01: 16 bytes
10: 32 bytes
11: 64 bytes

0

https://wch-ic.com

	Overview
	Features
	Chapter 1 Overview
	1.1 Instruction Set
	1.2 Register Set
	1.3 Privilege Mode
	1.4 CSR Register

	Chapter 2 Exception
	2.1 Exception Types
	2.2 Entering Exception
	2.3 Exception Handling Functions
	2.4 Exception Exit

	Chapter 3 PFIC and Interrupt Control
	3.1 PFIC Register Set
	3.2 Interrupt-related CSR Registers
	3.3 Interrupt Nesting
	3.4 Hardware Prologue/Epilogue (HPE)
	3.5 Vector Table Free (VTF)

	Chapter 4 Physical Memory Protection (PMP)
	4.1 PMP Register Sets
	4.2 pmp<i>cfg Register
	4.3 pmpaddr<i> Register
	4.4 Protection Mechanism

	Chapter 5 System Timer (SysTick)
	Chapter 6 Processor Low-power Settings
	6.1 Enter Sleep
	6.2 Sleep Wakeup

	Chapter 7 Debug Support
	7.1 Debug Module
	7.2 Debug Interface

	Chapter 8 CSR Register Lists
	8.1 CSR Register Lists
	8.2 RISC-V Standard CSR Registers
	8.3 User-defined CSR Registers

