iy
y

Wy
@)

YPRESS

PERFORM

Basic Embedded Host Using the SL811HS

AN1215

Introduction

The SL811HS is a full-featured USB embedded host control-
ler. It utilizes a standard address/data bus typical of most 16-
and 32-bit embedded processors as well as some 8-bit micro-
controllers. This application note addresses the usage of the
SL811HS in an embedded USB host application.

System Interface

The SL811HS incorporates an industry-standard
address/data bus. The requirements of the embedded pro-
cessor signals are laid out in the following list.

Active LOW CHIP SELECT signal
Active LOW READ signal

Active LOW WRITE signal

Active HIGH INTERRUPT signal
Address bus or GPIO

Data bus, at least 8 bits wide
m GPIO to drive RESET and USB bus power enable

See the application note “Interfacing an External Processor to
the SL811HS/S” for more details on host circuitry configura-
tion. This application note provides complete details and
examples of the signaling interface to the SL811HS. Most
microcontrollers will be able to interface to the SL811HS with
little or no glue logic.

Programming Interface

The SL811HS uses a memory mapped interface with an 8-bit
address range. The SL811HS supports both a host and
peripheral interface, however only the host registers are
described in this document. The first 16 addresses (00h-0Fh)
are filled with 20 registers used to control the USB host SIE.
The addresses ranging from 10h-FFh are used as user
assignable USB FIFO buffers. Figure 1 shows the SL811HS
memory map.

December 5, 2002

Figure 1. SL811HS Memory Map

Control sliay
Registers
10h - FFh
USB
FIFO
memory
\

The 20 host control registers are used to enable transactions,
interrupts, and report status. Table 1 is a summary of the
SL811HS register set. The table is followed by a brief descrip-

tion of each register

Table 1. SL811HS Register Set Summary

Addr. Write Function Read Function
0x00 USB-A Control USB-A Control
0x01 USB-A Address USB-A Address
0x02 USB-A Length USB-A Length
0x03 USB-A PID/EP USB-A Status
0x04 USB-A Address USB-A Count
0x05 Ctrl1 Ctrl1
0x06 Int. Enable Int. Enable
0x08 USB-B Control USB-B Control
0x09 USB-B Address USB-B Address
O0x0A USB-B Length USB-B Length
0x0B USB-B PID/EP USB-B Status
0x0C USB-B Address USB-B Count
0x0D Int. Status Int. Status
O0x0E SOF Low HW Revision
O0xOF SOF High/Ctrl2 SOF High/Ctrl2

Document No. 001-16953 Rev. **

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-16953_pdf_p_1

USB-A/B Host Control (0x00, 0x08, R/W) — This register is
used to provide control over basic host transactions. For
example, the register enables USB transactions, sets the
transaction direction, and controls the data toggle.

USB-A/B Base Address (0x01, 0x09, R/W) — This register
acts as a memory pointer in the range of 10h-FFh. Data that
is sent to a USB peripheral is gathered from this internal
memory location and sent over the USB. Data reported from
a USB peripheral is put at the memory location pointed to by
this register.

USB-A/B Base Length (0x02, Ox0A, R/W) — The base
length is used to determine the maximum length of a transac-
tion. When the SL811HS sends data to a USB peripheral this
register determines the length of the data in the packet.
When the USB peripheral reports data back to the host this
register determines the maximum data length that will be
accepted.

USB-A/B PID/Endpoint (0x03, 0x0B, W) — This register con-
tains the host PID (i.e., SETUP, IN, OUT) and the target end-
point number.

USB-A/B Status (0x03, 0x0B, R) — This register contains the
status of the last performed USB transaction. The status
includes the received PID (ACK, NAK, and STALL), data tog-
gle, and any error condition.

USB-A/B Address (0x04, 0x0C, W) — This register contains
the USB peripheral device address

USB-A/B Transfer Count (0x04, Ox0C, R) — This register
contains the residual transfer count after a USB transaction
has taken place. In either transfer direction this register value
represents the difference between the value written to the
Base Length register and the actual number of bytes written
from/read into the SL811HS internal memory. If the peripheral
tries to send too large of a packet for the SL811HS to handle,
the error will be noted in the Status register.

Control 1 (0x05, R/W) — This register enables SOF genera-
tion, resets the SIE, allows software to set the USB data line
states, sets the USB bus speed, and suspends the SL811HS.
The ability to set the USB data lines states is particularly use-
ful for signaling a USB bus reset.

Interrupt Enable (0x06, R/W) — This register allows software
to enable an interrupt signal (INTRQ HIGH) on certain
events. These events include transaction completion, SOF,
device insertion/removal, and resume signaling detection.

Interrupt Status (0x0OD, R/W) — This register is read by the
external processor upon an interrupt event to find which
event caused the interrupt. The events reported in this regis-
ter correspond to the events enabled in the Interrupt Enable
register. The interrupt is deasserted by writing a “1” to any
asserted interrupt bit.

SOF Counter Low (0x0E, W) — Sets the low byte of the timer
that tracks SOF timing. This register should be written with
EOh after reset.

December 5, 2002

AN1215

Hardware Revision (OXOE, R) — This register allows device
firmware to read the current silicon revision. See the SL81HS
data sheet for the most current valid values.

SOF Counter High/Control 2 (OxOF, R/W) — Sets the high
byte of the timer that tracks SOF timing, allows software to
swap D=, and selects host or peripheral modes. This register
should be written with the value AEh after reset to enable
host mode and proper SOF timing. The SOF Counter
High/Low registers must be initialized before enabling SOF
generation.

Two transaction engines, USB-A and USB-B, are provided so
that one transaction can be set up while the other is taking
place. The transaction engines are symmetric, so it does not
matter which one is used and device software is not required
to interact with both engines. In fact some simpler applica-
tions, such as using a mouse and keyboard on a set top box,
would typically only use one engine because throughput
requirements for these devices are minuscule and software
complexity can be reduced by dealing with one engine only.
Both transaction engines are more commonly used in high-
throughput applications such as video or mass storage.

USB Host Operation

There are essentially eight parts to interacting with the
SL811HS during USB host operation. These parts include:

m Enabling interrupts

Vbus-on and device attachment
USB bus reset

SOF/EOP generation

USB transactions

Errors

USB bus suspend/resume

Remote wake-up

Each of these items will be described in detail in the following
section.

1. Enabling Interrupts — Initially the “insert/remove” inter-
rupt should be enabled. This interrupt can be enabled by
writing to the Interrupt Enable register previously de-
scribed.

2. Vbus-on and device attachment — Power should be ap-
plied to the bus after the interrupts are enabled so that the
SL811HS will properly report the attachment of any pe-
ripheral devices. Device attachment is reported by the as-
sertion of INTRQ pin. The interrupt source can be read via
the Interrupt Status register. If the “insert/remove” interrupt
is asserted, the “device detect” bit should be polled. If “de-
vice detect” is asserted (asserted = 0b), then a peripheral
is attached and the interrupt was more than likely not
caused by a peripheral power-on glitch. However, a safer
method to absolutely determine device attachment is to
wait 5-10 ms before proceeding with device attachment
processing. Since the device attachment/detachment

Document No. 001-16953 Rev. ** 2

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-16953_pdf_p_2

hardware in the SL811HS is not de-bounced, multiple in-
terrupts may occur after the device tries to initially attach
to the USB. Once the device firmware has determined that
a device is definitely attached, the “D+" bit in the Interrupt
Status register is used to determine the speed of the at-
tached peripheral. If “D+" is asserted then the attached
peripheral is a full-speed device. If “D+” is not asserted
then the device is a low-speed peripheral. USB opera-
tional speed is set with the “USB speed” bit in the Control
1 regqister. If a device attach/detach interrupt occurs and
the “device detect” bit is deasserted, software should im-
mediately consider the device as detached.

3. USB bus reset — After a device is attached the host is
required to generate a USB bus reset. USB reset through
a hub is not discussed in this document, however more
information can be found in the USB specification. USB
bus reset is generated when the SL811HS drives both D+
and D— LOW for 50 ms or more. Bits 3 and 4 of the Control
1 register allow software to directly control the states of
the SL811HS D pins and set both pins LOW. After 50 ms,
control of the Dz pins should be returned to the SL811HS
SIE via the same control bits.

4. SOF/EOP generation — The SL811HS must wait at least
2.5 us after USB bus reset deassertion before beginning
any transaction including “Start of Frame” (SOF) transac-
tions. During this “reset relaxation” time software should
set up the SOF counter high/low registers as described in
the previous section. After the reset relaxation period,
SOF generation can be started by writing to the “SOF en-
able/disable” bit in the Control 1 register. The “ARM” bitin
the USB-A Host Control register must also be set to en-
able SOF generation.

5. USB transactions — Transactions should not be started
any sooner than 100 ms after the deassertion of USB bus
reset. Before performing any USB transactions, the “USB-
A” and “USB-B” interrupts (if B engine is used) should be
enabled in the Interrupt Enable register. Each transaction
will require software to set up to five register values. These
include the internal buffer memory address (USB-A/B
Host Base Address), the length of the transaction (USB-
A/B Host Base Length), the peripheral device address
(USB-A/B Host Device Address), the USB PID and pe-
ripheral endpoint (USB-A Host PID, Device Endpoint),
and the transaction enable (USB-A/B Control). The value
of these registers should not be modified after the trans-
action is enabled or before the transaction is complete.
Upon transaction completion, an interrupt will be signaled
to the controlling processor. At this time the USB-A/B Sta-

December 5, 2002

AN1215

tus register should be read to determine any errors. The
USB-A/B Host Transfer Counter register should be read
as well to determine if the entire data packet was properly
sent.

6. Errors — Errors may occur during USB transactions; for
instance if a misbehaving device is attached, or a device
is detached in the middle of a transaction. Any error must
be dealt with in software on the controlling processor. How
a USB host stack should deal with specific errors is be-
yond the scope of this document, however the USB spec-
ification covers most error cases in detail.

7. USB bus suspend/resume — USB bus suspend essen-
tially entails shutting off SOF generation and not perform-
ing any more transactions until the USB is resumed. SOF
generation can be disabled in the Control 1 register using
the “SOF enable/disable” bit. A USB resume simply re-
quires that SOF generation be turned back on.

8. Remote Wake-up — Remote wake-up signaling can be
automatically detected and can cause an interrupt. Re-
sume detection should be enabled before the USB is put
into suspend. First, the “device detect/resume” bit in the
interrupt enable register is set in order to detect the re-
sume event. This interrupt enable bit should only be used
to detect resume signaling. This interrupt should not be
set to detect device insertion, as it will continuously inter-
rupt during USB traffic. After the USB resumes, this bit
should be de-asserted. The final step is to set the “sus-
pend” bit in the Control 1 register to enable resume sig-
naling detection.

Endpoint 0 Control Transactions

This section provides state diagrams of USB host controller
transactions. A USB host may need to support up to three
types of transactions on endpoint 0. These transactions
include Control-Read, No-Data Control, and Control-Write
transactions. Operations that require one or more register
writes are shown in bold. State change decisions are shown
with a question mark and can be determined by reading the
USB Status register and the USB Host Transfer Count regis-
ter. Upon any disconnect event during a transaction the flow
should automatically transition to the error handler. Non-con-
trol endpoint transactions, such as bulk, isochronous, or inter-
rupt are essentially simpler subsets of control transactions,
so their details are not covered in this document.

Document No. 001-16953 Rev. ** 3

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-16953_pdf_p_3

Control-Read

1. Set buffer memory address and fill it

with the SETUP request <€

2. Set transaction length to 8 bytes

3. Set USB PID = SETUP

4. Set Endpoint =0

5. Set device address

6. Enable USB-A/B interrupt

7. Set Host Control = ARM + Enable + DIR

More data or
max. packet size
received?

No-Data Control

[

Set buffer memory address and fill it

AN1215

.......................... Init setup
(w/ data toggle 0, accepted
toggle = 1)
) NAK or STALL?) Error handler
ACK? (OS dependent)
i 1. Set transaction length
— Init IN > 2 SetUSBPID=IN
NAK or ©oggie error? Error handler 3. Set Host Control= ARM + Enable
STALL or Overflow? (OS dependent)
ACK?
Store Bytes 1. Read received byte from internal
>
(& Change Accepted Data ” memory
Toggle)

Packet received and last
transaction was not max. packet
size? — or zero length packet

received?

1. Set transaction length= 0

Init Status OUT
(w/ data toggle 1)

NAK?

>

STALL?
ACK?

Done
(OS dependent)

Init setup

A

with the SETUP request

Set transaction length to 8 bytes

Set USB PID = SETUP

Set Endpoint =0

Set device address

Enable USB-A/B interrupt

Set Host Control = ARM + Enable + DIR

NogoMwN

December 5, 2002

(w/ data toggle 0, accepted
toggle = 1)
NAK or STALL?

Ack
h 4

Init Status IN
(w/ data toggle 1)

>

2. Set USB PID = OUT
3. Set Host Control= ARM + Enable+ DIR

\4

Error handler
(OS dependent)

Error handler

(OS dependent)

1. Set transaction length= 0

NAK or toggle error?

STALL or Overflow?
ACK?

Done
(OS dependent)

Document No. 001-16953 Rev. **

» 2.SetUSBPID=IN
3. Set Host Control= ARM + Enabl

Error handler

(OS dependent)

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-16953_pdf_p_4

Control Write

1. Set buffer memory address and fill it .
with the SETUP request B Init setup
2. Set transaction length to 8 bytes (w/ data toggle 0)
3. Set USB PID = SETUP
4. Set Endpoint = 0 NAK or STALL? Error handler
5. Set device address 5
6. Enable USB-A/B interrupt ACK? (OS dependent)
7. Set Host Control = ARM + Enable + DIR v
—P Init OUT >
NAK? > Error handler
STALL? (OS dependent)
ACK?
More data to
send? v
Load Bytes

(& Change Data Toggle)

h 4

All bytes sent?

Init Status IN
_> (w/ data toggle 1)

\4

NAK or toggle error?

ACK?

v

Done

STALL?

(OS dependent)

USB Host Stack Support

Cypress supports a number of host stack implementations for
the SL811HS by providing a host controller driver. Supported
operating system stacks include VxWorks, WIinCE, and
Linux. Cypress also offers a SL811HS development kit with
host firmware examples. Some implementations may be
available on the Cypress web site. Others not listed on the
web site are available from Cypress USB applications sup-
port upon request.

Summary

The SL811HS can be used as a versatile and full-featured
embedded USB host controller. The combination of a stan-
dard signaling interface and simple control registers allows
the SL811HS to be integrated with a small or large scale
embedded USB host stack. For further questions and assis-
tance please contact Cypress USB applications support.

December 5, 2002

>

Document No. 001-16953 Rev. **

Error handler
(OS dependent)

\ 4

1

w N

[iN

N

wn e

AN1215

. Set transaction length
. Set USB PID = OUT
Set Host Control= ARM + Enable+ DIR

. Load transaction bytes into
internal memory
. Set correct data toggle

. Set transaction length= 0
Set USB PID = IN
. Set Host Control= ARM + Enable

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-16953_pdf_p_5

AN1215

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation number
and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

All product and company names mentioned in this document are the trademarks of their respective holders.

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600
Fax: 408-943-4730
http://www.cypress.com

© Cypress Semiconductor Corporation, 2002-2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of
Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress
against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal,
non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for
the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit
as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified
above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to
make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any
product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or
failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies
that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

December 5, 2002 Document No. 001-16953 Rev. ** 6

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-16953_pdf_p_6

