
Rev. 0.1 5/06 Copyright © 2006 by Silicon Laboratories AN282

AN282

USB MASS STORAGE DEVICE REFERENCE DESIGN PROGRAMMER'S GUIDE

1. Introduction

Among the USB device classes natively supported by popular operating systems, the USB Mass Storage Device
(MSD) class is one of the most widely supported device classes. A USB device that supports this class can use the
built-in drivers provided by the operating system, without the need to install or maintain any custom device drivers.
The USB MSD Reference Design utilizes this widespread support by providing device firmware for Silicon
Laboratories USB microcontrollers that complies with the MSD class specification. This USB MSD Reference
Design Programmer's Guide describes in detail the various components of the device firmware. The USB-MSD-RD
Reference Design Kit User's Guide includes demonstration instructions and information about the kit contents.

2. USB MSD Reference Design Hardware Overview

The MSD reference design hardware consists of two boards - C8051F340-TB Target Board and CF, SD, MMC
Memory Expansion Board (AB5). These are contained in the kits C8051F340DK and USB-MSD-RD, respectively.
See the USB-MSD-RD User's Guide for details on the contents of these kits. Figure 1 shows these two boards
connected via the expansion connector. Figure 2 shows a block diagram with the connections between the
hardware components. Refer to the USB-MSD-RD User's Guide for detailed pin connections, schematic, and bill of
materials of the evaluation board.

Figure 1. C8051F340-TB Target Board connected to AB5 Expansion Board

Relevant Devices
This application note applies to the following devices:
C8051F340, C8051F341, C8051F342, C8051F343, C8051F344, C8051F345, C8051F346, C8051F347

AN282

2 Rev. 0.1

Figure 2. USB MSD RD Hardware Block Diagram

SD /
MMC

Memory
Card

C8051F340-TB

PC

SPI
Parallel
Interface

CompactFlash
Memory Card

(For
Example

App)

(For
MSD)U

S
B

R
S

23
2

AB5 Memory Expansion Board

AN282

Rev. 0.1 3

3. USB MSD Reference Design Firmware Overview

The USB MSD RD firmware consists of many distinct blocks that work together. The overall system architecture is
shown in Figure 3. The code space usage ratio of the different blocks is shown in Figure 4.

Figure 3. USB MSD RD System Architecture

USB Function
Controller

Mass Storage
Device

SCSI

Sector Server

File System

Media Access

Example
Application

ADC

SD /
MMC

Memory
Card

C
80

51
F

34
0

U
S

B
 M

ix
ed

 S
ig

na
l M

C
U

RS232
Transceiver

USB

Temp. Sensor

Push
Buttons

UART

External HW Peripherals

SPI

Compact
Flash

Memory
Card

USB Host Controller RS232 Serial Port

C8051F340-TB Target Board AB5 Memory
Expansion Board

Driver Stack Driver Stack

Windows Explorer or
Other Application

HyperTerminal

PC

USB MSD Data Flow Example App. Data Flow

Components used only
for USB MSD Data Flow

Example App. components
that can be customized

File system API serving
the Example App.

Shared media access
components

AN282

4 Rev. 0.1

Figure 4. USB MSD Firmware Code Space Usage on the C8051F340

The firmware is designed such that the reference design can be used in one of two ways:

 Mass Storage Device Mode (connected to the PC via USB)

 Independent Embedded System Mode (connected to the PC via RS232 serial interface).

In MSD Mode, the device appears as a USB Mass Storage Device on the PC. This mode uses the firmware
components 'USB', 'Mass Storage Device', 'SCSI', 'Sector Server', and 'Media Access'. In Embedded System
Mode, the example application can accept commands via a UART command interpreter shell, and perform
appropriate functions. In this mode, a RS232 serial connection is made between the 'F340 target board and the
PC. This mode uses an external RS232 transceiver, some on-chip hardware peripherals (Temp. sensor, ADC,
UART), and the firmware components 'Example Application', 'File System', 'Sector Server', and 'Media Access'.
Each component is explained in detail in the following sections. The USB-MSD-RD User's Guide contains step-by-
step instructions that demonstrate both the modes of operation.

4. USB MSD RD Firmware Components

4.1. USB MSD RD Media Access Firmware
The USB MSD RD includes firmware to access SD/MMC and CompactFlash cards. In a typical application where
only one type of interface is needed, the unnecessary media access firmware can be removed to save code space.
Also, some parts of this media access firmware might need to be modified to fit the end application. For example,
the pins that are assigned to the SPI peripheral might need to be changed to accomodate other system
requirements.

4.1.1. CompactFlash Interface Firmware

The CompactFlash (CF) Interface Firmware is the low-level interface that allows the rest of the system to access a
CF memory card. The CF card is accessed by the firmware using a parallel interface that consists of an 8-bit data
bus, a 3-bit address bus, and 6 control signals. A CF card is connected to the 'F340 device port pins as described
in Section “2. USB MSD Reference Design Hardware Overview”. After a device reset, the Init_CF function is called
by the Sector Server. If this detects a card, then a call to Identify_Drive is made to get the size information of the
card. The Read_Sector and Write_Sector functions are then used for data transfers.

The CompactFlash media access functions are described below. There is typically no need to call any of these
functions directly from the Application-level firmware because the Sector Server layer encapsulates them. When
designing new hardware, these functions may need to be modified to suit the new hardware connections.

USB / MSD /
SCSI (3.9 kB)

6% Sector Server
(1.1 kB)

2%

Used
(23.9 kB)

38%

SD / MMC
Media Access

(2.1 kB)
3%

CF Media
Access
(0.7 kB)

1%

Compiler
Libraries /

Misc
(5.1 kB)

8%

Example
Application

(5.1 kB)
8%

File System
(5.9 kB)

9%

Available
 Free Space

(39.1 kB)
62%

AN282

Rev. 0.1 5

4.1.1.1. Init_CF

Description: Initializes a CompactFlash memory card.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_CF_Basic_Functions.c

Prototype: char Init_CF (void)

Parameters: None.

Return Value: 0, if initialization was successful.
CF_NO_CARD, if no card was detected.

4.1.1.2. Identify_Drive

Description: Reads the card identifier from a CompactFlash card.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_CF_Basic_Functions.c

Prototype: char Identify_Drive (char* buffer)

Parameters: 1. buffer-pointer to a memory location for returning the card identifier information.

Return Value: None.

4.1.1.3. Read_Sector

Description: Reads a 512-byte block from a CompactFlash card starting at the location specified by
address. The block is copied to the memory location pointed to by buffer.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_CF_Basic_Functions.c

Prototype: char Read_Sector (unsigned long address, char* buffer)

Parameters: 1. address-Starting address of the 512-byte block in the CF card.

2. buffer-Pointer to a memory location where the data will be copied to.

Return Value: 0, if the read operation was successful.
CF_NO_CARD, if no CF card was detected.
Errorcode, otherwise.

4.1.1.4. Write_Sector

Description: Write a 512-byte block to a CompactFlash card starting at the location specified by
address. The block is copied from the memory location pointed to by buffer to the CF card.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_CF_Basic_Functions.c

Prototype: char Write_Sector (unsigned long address, char* buffer)

Parameters: 1. address-Starting address of the 512-byte block in the CF card.

2. buffer-Pointer to a memory location where the data will be copied from.

Return Value: 0, if the write operation was successful.
CF_NO_CARD, if no CF card was detected.
Errorcode, otherwise.

AN282

6 Rev. 0.1

4.1.2. SD/MMC Interface Firmware

The SD/MMC Interface Firmware is the low-level interface that allows the rest of the system to access Secure
Digital (SD) and MultiMediaCard (MMC) memory cards. SD/MMC cards use SPI for communication in 4-wire
mode. A SD/MMC card is connected to the 'F340 device port pins as described in Section “2. USB MSD Reference
Design Hardware Overview”. After a device reset, the Sector Server checks if a CF card is present as described in
Section 4.1.1. If no CF card is detected, then MMC_FLASH_Init is called to check if a SD/MMC card is present.

The SD/MMC media access functions are described below. There is typically no need to call any of these functions
directly from the Application-level firmware because the Sector Server layer encapsulates them. When designing
new hardware, these functions may need to be modified to suit the new hardware connections.

4.1.2.1. MMC_FLASH_Init

Description: Initializes a SD/MMC memory card. This calls the internal function SPI_Init to initialize the
SPI hardware, examines the Operating Conditions Register (OCR) to ensure that the
device has been initialized correctly, and also determines the size of the card by reading
the Card Specific Data Register (CSD).

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_MMC.c

Prototype: void MMC_FLASH_Init (void)

Parameters: None.

Return Value: None.

4.1.2.2. MMC_FLASH_Block_Read

Description: Reads a 512-byte block from a SD/MMC card starting at the location specified by address.
The block is copied to the memory location pointed to by pchar.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_MMC.c

Prototype: unsigned int MMC_FLASH_Block_Read (unsigned long address, unsigned
char* pchar)

Parameters: 1. address-Starting address of the 512-byte block in the SD/MMC card.

2. pchar-Pointer to a memory location where the data will be copied to.

Return Value: 0, if the read operation was successful.
Card Response Code, otherwise.

4.1.2.3. MMC_FLASH_Block_Write

Description: Write a 512-byte block to a SD/MMC card starting at the location specified by address.
The block is copied from the memory location pointed to by wdata to the CF card.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_MMC.c

Prototype: unsigned char MMC_FLASH_Block_Write (unsigned long address,
unsigned char *wdata)

Parameters: 1. address-Starting address of the 512-byte block in the CF card.

2. wdata-Pointer to a memory location where the data will be copied from.

Return Value: 0, if the write operation was successful.
Card Response Code, otherwise.

AN282

Rev. 0.1 7

4.2. Sector Server
The tasks and capabilities of the Sector Server are listed below:

 Encapsulates lower-level CF and SD/MMC media access functions, so that those functions do not need to be
called from the Application-level firmware.

 Detects and initializes the memory card on startup.

 Reads and validates the boot sector of the memory card. Checks for a block size of 512 bytes, FAT16
filesystem, and a boot sector signature of 0xAA55 (little endian).

 Reads and stores a global copy of details about the memory card such as the number of FAT copies, the
number of root directory entries, the number of sectors, and the size of each FAT.

 Maintains one 512-byte scratch buffer that is used by the entire system to read or write blocks of data.

 Handles multiple FAT copies by keeping them in sync with each other. Transaction commits and rollbacks are
not supported because of this approach, i.e. transactions are always committed, and cannot be rolled back.

 Supports memory cards with capacity up to 4 GB. This restriction is imposed by the FAT16 filesystem.

 Maintains a global disk map. This is an overview of where each FAT copy begins and ends, where the root
directory is located, and where the file data area begins. See Table 1 for an example Sector Server View of a
32 MB MMC card.

The Embedded File System API and the SCSI Command Interpreter encapsulate the Sector Server functions. So,
there is typically no need to call any of the Sector Server functions directly from the Application-level firmware.
Because of this, these functions are not explained here in detail. Instead, a list of Sector Server functions with brief
explanations is presented in Table 2.

Table 1. Sector Server View of a 32 MB MMC Card (FAT16 filesystem)

MMC block
Numbers

SCSI Block
Numbers

Used for: Number of
Blocks

Size

0 Non-existent Partition table 1 512 B

1..31 Non-existent Not used 31 15.5 K

32 0 Boot record 1 512 B

33..275 1..243 1st FAT copy 243 122 KB

276..518 244..486 2nd FAT copy 243 122 KB

519..550 487..518 Root directory 32 16 KB

551..end 519..end File data 62000+ 30+ MB

AN282

8 Rev. 0.1

4.3. USB Low-level Interface
The USB descriptor is an important component of the USB low-level interface. When a USB device is plugged into
a USB host, USB Enumeration is initiated, during which USB descriptors are requested by the host to determine
the capabilities and requirements of the device. The information contained in the descriptor allows the host to load
the appropriate device drivers and allocate power to the device, if requested. See "Appendix A—MSD RD USB
Descriptor Details" on page 20 for more information about the USB descriptors used in the USB MSD RD firmware.

The tasks and capabilities of the USB Low-level Interface are listed below:

 Loads data into the IN endpoint FIFO.

 Reads data from the OUT endpoint FIFO.

 Handles bus conditions USB Suspend, Resume and Reset.

 Sends a STALL when the host sends an unsupported command.

 Handles the USB Standard Requests that are listed below:
GET_STATUS
CLEAR_FEATURE
SET_FEATURE
SET_ADDRESS
GET_DESCRIPTOR
GET_CONFIGURATION
SET_CONFIGURATION
GET_INTERFACE
SET_INTERFACE

The USB low-level interface functions are internal functions to the MSD RD, and need not be called directly from
the Application-level firmware. Please refer to the module "F34x_MSD_USB_ISR.c" for the functions and their
descriptions.

Table 2. Sector Server Functions

Function Name Description

Module: F34x_MSD_Sect_Serv.c

Sect_Init Initializes and validates the memory card.

Sect_Validate Checks the validity of the memory card boot record.

Sect_Sectors Returns the number of sectors of the current memory card.

Sect_Print Prints memory card type and size.

Sect_Read Reads one sector into the scratch buffer.

Sect_Write Writes one sector from the scratch buffer.

Sect_Write_Multi_Fat Writes changes to the 1st FAT copy in the 2nd FAT copy as well,
thus keeping both the FAT copies in sync.

Sect_Root_Dir Returns the first sector of the root directory.

Sect_Root_Dir_Last Returns the last sector of the root directory.

Sect_File_Data Returns the first sector of file data.

Sect_Fat1 Returns the first sector of the 1st FAT

Sect_Fat2 Returns the first sector of the 2nd FAT

AN282

Rev. 0.1 9

4.4. MSD Class Command Interpreter
The Mass Storage Device Class Command Interpreter communicates directly with the hardware USB data
endpoints (IN and OUT) that are managed by the USB Low-level Interface code. Note that the USB control
endpoint traffic is handled by the USB Low-level Interface, and is not seen by the MSD Class command interpreter.

The 'MSD Class - Bulk Only Transport' specification defines two structures that are used for reliable Command
Transport and Status Transport. They are described below:

4.4.1. Command Block Wrapper (CBW)

CBW is defined as a packet containing a command block and associated information. See Figure 5 for the format
of this structure.

4.4.2. Command Status Wrapper (CSW)

CSW is defined as a packet containing the status of a command block. See Figure 5 for the format of this structure.

Table 3. Command Block Wrapper (CBW) Format

7 6 5 4 3 2 1 0

0–3 dCBWSignature = 0x43425355

4–7 dCBWTag

8–11 dCBWDataTransferLength

12 bmCBWFlags (including direction bit)

13 Reserved (0) bCBWLUN

14 Reserved (0) bCBWCBLength (1..16)

15–30 CBWCB (contains SCSI command)

Table 4. Command Status Wrapper (CSW) Format

7 6 5 4 3 2 1 0

0–3 dCSWSignature (= 0x53425355)

4–7 dCSWTag (=identical as dCBWTag)

8–11 dCSWDataResidue (=dCBWDataTransferLength – number of bytes processed)

12 bCSWStatus (=Good, Fail or Phase Error)

AN282

10 Rev. 0.1

4.4.3. Command Interpreter State Machine

The command interpreter implements a simple state machine that is very similar to the Command/Data/Status
Flow shown in Figure 5. In the state machine implementation, the 'Data - In' and 'Data - Out' stages in this figure
have been combined into one state.

Figure 5. MSD Class - Command/Data/Status Flow

 MSD_READY: The state machine is in this state most of the time. In this state, the command interpreter
receives data via the data OUT endpoint and checks whether it is a valid and meaningful CBW. If it is
determined to be a valid and meaningful CBW, then it moves to the next state, which is MSD_DATA.

 MSD_DATA: In this state, the valid CBW is sent to the SCSI block for processing. Depending on the contents of
the CBW (direction bit in bmCBWFlags), either a Data-In or a Data-Out transfer happens. Then, the state
machine transitions to the next state.

 MSD_STATUS_TRANSPORT: In this state, the Good/Failed/PhaseError status and the amount of unprocessed
bytes is returned in a CSW. After this state, the state machine reverts to the MSD_READY state.

The state machine is implemented as one function, which is described below.

Ready

Command
Transport

(CBW)

Status
Transport

(CSW)

Data – In
(to host)

Data – Out
(from host)

AN282

Rev. 0.1 11

4.4.4. Msd_Step

Description: The MSD Class Command Interpreter is implemented as a state machine in this function.
This function should be called periodically from the main loop. For the USB MSD RD firm-
ware, the interval should be less than 3 ms to keep the data transfer at the highest possi-
ble level. Increasing the calling interval over 3 ms will lower the data transfer speed. The
determination of the 3 ms interval involves the timing of the low-level media access func-
tions. So, the best interval should be reevaluated if any modifications are made to those
functions.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_MSD.c

Prototype: void Msd_Step (void)

Parameters: None.

Return Value: None.

Refer to Section “5. Mass Storage Device Mode Operation” for an illustration of how the MSD block communicates
with the other firmware components.

AN282

12 Rev. 0.1

4.5. SCSI Command Interpreter
Small Computer System Interface - 2 (SCSI-2) is a standard primarily used by hard disk drives and optical drives
that defines an I/O bus for interconnecting computers and peripherals. The USB MSD class specification is written
such that SCSI commands can be embedded inside the MSD class structures CBW and CSW. This allows Flash-
based memory cards to be connected via USB and appear as disk drives within the operating system. The USB
MSD RD implements a SCSI Command Interpreter to process and respond to the SCSI commands sent by the
MSD block. This is responsible for the parsing and handling of 10 different SCSI commands as listed in Table 5.
Unknown commands are also properly handled.

Table 5. SCSI Commands, Codes, and Responses

SCSI command SCSI
code

Response

SCSI_TEST_UNIT_READY 0x00 “Passed”

SCSI_INQUIRY 0x12 code const BYTE
Scsi_Standard_Inquiry_Data[36]= {
0x00, // Peripheral qualifier & device type
0x80, // Removable medium
0x05, // Version of the standard (5=SPC-3)
0x02, // No NormACA, No HiSup, data format=2
0x1F, // No extra parameters
0x00, // No flags
0x80, // Basic Task Management supported
0x00, // No flags
'S','i','L','a','b','s',' ',' ',
'M','a','s','s',' ',
'S','t','o','r','a','g','e'
};

SCSI_MODE_SENSE_6 0x1A code const BYTE Scsi_Mode_Sense_6[4]= {
0x03,0,0,0 // No mode sense parameters
};

SCSI_START_STOP_UNIT 0x1B “Passed”

SCSI_PREVENT_ALLOW_MEDIUM_REMOVAL 0x1E “Passed”

SCSI_READ_CAPACITY_10 0x25 BYTE Scsi_Read_Capacity_10[8]={
0x00,0x00,0xF4,0x5F, // Last block address
0x00,0x00,0x02,0x00 // Block length
};

SCSI_READ_10 0x28 Read a number of sectors from the memory card
and send those via the USB IN bulk endpoint.

SCSI_WRITE_10 0x2A Receive a number of sectors via the USB OUT bulk
endpoint and write these sectors to the memory
card.

SCSI_VERIFY_10 0x2F “Passed” (this command is used when the host PC
formats the filesystem).

AN282

Rev. 0.1 13

The MSD Class Command Interpreter calls the SCSI Command Interpreter whenever a valid and meaningful CBW
is received from the host. After processing the command, the SCSI Command Interpreter is responsible for setting
Scsi_Status and Status_Residue to appropriate values.

 Scsi_Status can be set to one of three values: Passed (0), Failed (1), or Phase Error (2).

 Scsi_Residue indicates how many bytes of data have not been processed.

4.6. Embedded File System Interface
This firmware component is unique compared to the other blocks because this is the only one that is solely used by
the Application Firmware when the device is in 'Embedded System Mode', and not at all when it is in 'Mass Storage
Device Mode'. This component provides the Application Firmware with an API to the FAT16 file system. This
interface is commonly referred to as a "Stream I/O interface" because of the use of functions like fopen, fread, and
fclose. Note that Long File Names (LFNs) are not supported by this API functions. Abbreviated LFNs (abcdef~1.txt
etc) can be used in place of LFNs. The API functions are described in the section below.

4.6.1. FileSys_Init

Description: Initializes variables that are used for navigation over directories.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: void FileSys_Init (void)

Parameters: None.

Return Value: None.

4.6.2. write_current_dir

Description: Sends the current working directory path via the UART.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: void write_current_dir (void)

Parameters: None.

Return Value: None.

4.6.3. chngdir

Description: Changes the current working directory.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: BYTE chngdir (char* dirname)

Parameters: 1. dirname-Pointer to a memory location that contains the directory name.

Return Value: 0, if the directory does not exist.
1, if the directory change was successful.

AN282

14 Rev. 0.1

4.6.4. mkdir

Description: Creates a new directory.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: BYTE mkdir (char* dirname)

Parameters: 1. dirname-Pointer to a memory location that contains the directory name.

Return Value: 0, if the directory was created successfully.
DIRECTORY_EXISTS, if a directory by the specified name already exists.
NO_PLACE_FOR_DIRECTORY, if there is no space to create a directory.

4.6.5. rmdir

Description: Removes the specified directory. The contents of the directory (files, subdirectories) are
also deleted.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: BYTE rmdir (char* dirname)

Parameters: 1. dirname-Pointer to a memory location that contains the directory name.

Return Value: 1, if the directory was successfully removed.
0, otherwise.

4.6.6. fcreate

Description: Creates a new file with the specified name.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: static BYTE fcreate (find_info* findinfo, char* filename)

Parameters: 1. findinfo-Pointer to a structure with details about the file.

2. filename-Pointer to a memory location that contains the filename.

Return Value: 1, if the file was created successfully.
0, otherwise.

AN282

Rev. 0.1 15

4.6.7. fopen

Description: Opens a file in one of three modes - Read (r), Write (w), Append (a). In Write/Append
modes, if the specified filename does not exist, it is created. In Write mode, if the specified
file exists, it is overwritten.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: int fopen (FILE* f, char* filename, char* mode)

Parameters: 1. f-Pointer to file structure

2. filename-Pointer to a memory location that contains the filename.

3. mode-Pointer to a memory location that contains the file open mode.

Return Value: 1, if file was opened successfully.
0, otherwise.

4.6.8. fread

Description: Reads the specified number of bytes from a file.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: unsigned fread (FILE* f, BYTE* buffer, unsigned count)

Parameters: 1. f-Pointer to file structure

2. buffer-Pointer to a memory location where the data will be copied to.

3. count-The maximum number of bytes to read from the file.

Return Value: Number of bytes read from the file.

4.6.9. fwrite

Description: Writes the specified number of bytes to a file.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: unsigned fwrite (FILE* f, BYTE* buffer, unsigned count)

Parameters: 1. f-Pointer to file structure

2. buffer-Pointer to a memory location where the data will be copied from.

3. count-The number of bytes to write to the file.

Return Value: Number of bytes written to the file.

AN282

16 Rev. 0.1

4.6.10. feof

Description: Checks whether the specified file's current position pointer has reached the end of the file.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: int feof (FILE* f)

Parameters: 1. f-Pointer to file structure

Return Value: 0, if the file's current position pointer has not reached the end of the file.
1, if the file's current position pointer has reached the end of the file.

4.6.11. fclose

Description: Closes a file.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: void fclose (FILE* f)

Parameters: 1. f-Pointer to file structure

Return Value: None.

4.6.12. fdelete

Description: Deletes a file in the current working directory.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_File_System.c

Prototype: int fdelete (char* name)

Parameters: 1. name-Pointer to a memory location that contains the file name.

Return Value: 1, if the file was deleted successfully.
0, otherwise.

4.6.13. Format_Disk

Description: Formats a disk to the FAT16 file system. Note that the disk should have an existing parti-
tion for this to work. WARNING: Calling this function will erase all the data on the disk.

Supported Devices: C8051F340/1/2/3/4/5/6/7

Module: F34x_MSD_Format_Disk.c

Prototype: void Format_Disk (void)

Parameters: None.

Return Value: None.

AN282

Rev. 0.1 17

5. Mass Storage Device Mode Operation

When the device is in Mass Storage Device Mode, the following blocks are used. See Figure 3 for the connections
between the blocks.

 USB Low-level Interface

 Mass Storage Device Class Command Interpreter

 SCSI Command Interpreter

 Sector Server

 Media Access Firmware

The interactions between the USB, MSD, SCSI, and Sector Server blocks are shown in Figure 6 and Figure 7.

Figure 6. Mass Storage Device Mode Operation (Host to Device)

Figure 7. Mass Storage Device Mode Operation (Device to Host)

USB MSD SCSI Sect-serv

CBW

CSW

USB OUT

SCSI Rx

SCSI Status

SCSI Residue

Sect Write

USB MSD SCSI Sect-serv

CBW

CSW

USB IN

SCSI Rx

SCSI Status

SCSI Residue

Sect Read

AN282

18 Rev. 0.1

6. Embedded System Mode Operation

When the device is in the Embedded System Mode, the following blocks are used. See Figure 3 for the
connections between the blocks.

 App. Specific Hardware (RS232 Transceiver)

 On-chip hardware peripherals (Temp. sensor, ADC, and UART)

 Application Firmware

 File System API

 Sector Server

 Media Access Firmware

See the USB MSD User's Guide for demonstration instructions and a list of commands supported by the Example
Application's UART-based Command Interpreter Shell. For detailed information about the implementation of the
example application, refer to the source files in the software package that accompanies this application note.

7. Customizing USB MSD RD Firmware

The firmware components included in this reference design can be classified into four categories based on how
they will be used in an end application. This classification shows which components you should modify when
designing an application that is based on this reference design.

1. Firmware components that are typically used without any modification - USB, MSD, SCSI, and Sector Server
fall in this category.

2. Firmware components that need modification based on the end application's hardware design - Media Access
Firmware falls in this category.

3. Firmware components that can be customized with company and/or product information - the following fall in
this category:

0. SCSI device name that is returned on a SCSI_INQUIRY command

a.USB descriptor parameters that are returned on USB standard requests: VID, PID, and Serial Number.

2. Firmware components that are fully customizable - the Example Application and all its related functions fall in
this category. You can either modify the provided example code to fit your application needs, or you can create
an application from scratch using the File System API functions listed in Section 4.6.

AN282

Rev. 0.1 19

8. References

The following specifications/standards were used as references for this design.

[1] Universal Serial Bus Specification, Revision 2.0, December 21, 2000.

[2] Universal Serial Bus Mass Storage Device Class Bulk-Only Transport, Revision 1.0, September 31, 1999

[3] SCSI Architecture Model - 3 (SAM-3), Revision 9, September 12, 2003

[4] SCSI Block Commands - 2 (SBC-2), Revision 10, September 13, 2003

[5] SCSI Primary Commands - 3 (SPC-3), Revision 17, January 28, 2004

[6] Multimedia Commands - 4 (MMC-4), Revision 2d, September 2, 2003

[7] CF+ and CompactFlash, Revision 3.0

[8] MMC System Specification, Revision 3.31

AN282

20 Rev. 0.1

APPENDIX A—MSD RD USB DESCRIPTOR DETAILS

The USB Descriptor used by the USB MSD RD is available in the module 'F34x_MSD_USB_Descriptor.c'. The
descriptor has been written based on the information from the 'USB MSD Bulk-Only Transport' specification. The
salient points about this descriptor are listed here:

Device Descriptor
The device descriptor field must have a unique serial number that is at least 12 digits. A unique serial number on a
USB device maintains the same device devnode as a user moves the device from one USB port to another. This
unique devnode ensures that properties like icons, policies, and drive letters associated with the device are not
reset when the device is moved to a different USB port or when a second device with the same VID/PID/REV is
added to the system. This is set to "0078976543210" in this design, and can be customized.

Interface Descriptor
 bInterfaceClass is set to 0x08. This indicates that the device belongs to the USB Mass Storage Device Class.

 bInterfaceSubClass is set to 0x06 (SCSI Transparent Mode). Microsoft supports 0x02 for ATAPI CD-ROM,
0x05 for ATAPI removable media, and 0x06 for Generic SCSI media.

 bInterfaceProtocol is set to 0x50 (Bulk-Only Transport).

AN282

Rev. 0.1 21

APPENDIX B—USB HOST DETAILS

When the USB MSD RD is connected to the PC via a USB cable, it appears as a USB Mass Storage Device. There
is no need to install any drivers because the operating system has built-in class drivers. In the case of the USB
MSD RD, three Windows built-in drivers are automatically loaded. They are listed here:

Table 6. Drivers Loaded by Windows

Device Driver Stack Driver

Generic Volume File System

SiLabs Mass Storage USB Device disk.sys

USB Mass Storage Device usbstor.sys

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	1. Introduction
	2. USB MSD Reference Design Hardware Overview
	3. USB MSD Reference Design Firmware Overview
	4. USB MSD RD Firmware Components
	4.1. USB MSD RD Media Access Firmware
	4.1.1. CompactFlash Interface Firmware
	4.1.2. SD/MMC Interface Firmware

	4.2. Sector Server
	Table 1. Sector Server View of a 32 MB MMC Card (FAT16 filesystem)
	Table 2. Sector Server Functions

	4.3. USB Low-level Interface
	4.4. MSD Class Command Interpreter
	4.4.1. Command Block Wrapper (CBW)
	Table 3. Command Block Wrapper (CBW) Format
	4.4.2. Command Status Wrapper (CSW)
	Table 4. Command Status Wrapper (CSW) Format
	4.4.3. Command Interpreter State Machine
	4.4.4. Msd_Step

	4.5. SCSI Command Interpreter
	Table 5. SCSI Commands, Codes, and Responses

	4.6. Embedded File System Interface
	4.6.1. FileSys_Init
	4.6.2. write_current_dir
	4.6.3. chngdir
	4.6.4. mkdir
	4.6.5. rmdir
	4.6.6. fcreate
	4.6.7. fopen
	4.6.8. fread
	4.6.9. fwrite
	4.6.10. feof
	4.6.11. fclose
	4.6.12. fdelete
	4.6.13. Format_Disk

	5. Mass Storage Device Mode Operation
	6. Embedded System Mode Operation
	7. Customizing USB MSD RD Firmware
	8. References
	Appendix A—MSD RD USB Descriptor Details
	Device Descriptor
	Interface Descriptor

	Appendix B—USB Host Details
	Table 6. Drivers Loaded by Windows

