
VS1063a Prog. Guide

VS1063a PROGRAMMER’S GUIDE:
MP3 / OGG VORBIS ENCODER
AND AUDIO CODEC CIRCUIT

Key Features
• Encoders:

MP3; Ogg Vorbis; PCM; IMA ADPCM;
G.711 (µ-law, A-law); G.722 ADPCM

• Decoders:
MP3 (MPEG 1 & 2 audio layer III (CBR
+VBR +ABR));
MP2 (layer II) (optional);
MPEG4 / 2 AAC-LC(+PNS),
HE-AAC v2 (Level 3) (SBR + PS);
Ogg Vorbis; FLAC;
WMA 4.0/4.1/7/8/9 all profiles (5-384 kbps);
WAV (PCM, IMA ADPCM, G.711 µ-law/A-
law, G.722 ADPCM)

• Full Duplex Codecs with optional AEC:
PCM; G.711 (µ-law, A-law);
G.722 ADPCM; IMA ADPCM

• Streaming support
• Up to 96 KiB RAM for user code / data
• Unique ID for user code protection
• Quiet power-on and power-off
• I2S output interface for external DAC
• Serial control and data interfaces
• Can be used either as a slave co-processor

or as a standalone processor
• UART for debugging purposes
• New functions may be added with soft-

ware and up to 12 GPIO pins

Description
VS1063a is an easy-to-use, versatile encoder,
decoder and codec for a multitude of audio
formats.

VS1063a contains a high-performance, pro-
prietary low-power DSP core VS_DSP4, ROM
memories, 16 KiB instruction RAM and up to
80 KiB data RAM for user applications run-
ning simultaneously with any built-in decoder,
serial control and input data interfaces, up to
12 general purpose I/O pins, a UART, as well
as a high-quality stereo ADC, and a variable-
sample-rate stereo DAC, followed by an ear-
phone amplifier and a common voltage buffer.

VS1063a can act both as an “MP3 decoder
IC” or “MP3 encoder IC” slave in a system
with a microcontroller, or as a stand-alone cir-
cuit that boots from external SPI memory.

Applications
• MP3-recording audio player
• Streaming server and client
• Wireless audio transfer
• Standalone player and recorder
• Internet phones

Version: 1.31, 2017-10-06 1

VS1063a Prog. Guide

Additional Features

• EarSpeaker Spatial Processing
• Bass & treble controls
• Alternatively a 5-channel equalizer
• AD Mixer allows monitoring A/D con-

verter input while listening to stream
• PCM Mixer allows inserting a sidestream

while listening to main stream
• Adjustable Speed Shifter
• Operates with a single 12. . . 13 MHz or

24. . . 26 MHz clock
• Internal PLL clock multiplier
• Low-power operation
• High-quality on-chip stereo DAC with no

phase error between channels
• Zero-cross detection for smooth volume

change
• Stereo earphone driver capable of driv-

ing a 30 Ω load
• Separate voltages for analog, digital, I/O
• Lead-free RoHS-compliant package

Further Description

VS1063a is a pin-compatible alternative for
VLSI Solution’s VS1053. It has all the func-
tionality of VS1053 (except MP1 and MIDI
decoding) and many new features, particu-
larly MP3 and Ogg Vorbis recording.

Also full-duplex codec functions for phone ap-
plications have been added to VS1063a.

There are three variants of VS1063a: the full-
featured VS1063a, VS1163a without an MP3
encoder, and VS8063a without any MP3 func-
tionality.

A factory-programmable unique chip ID pro-
vides a basis for digital rights management or
unit identification features.

Operating Modes

VS1063a operates in one of two host modes:
as a slave co-processor or as a standalone
processor.

When used as a slave co-processor VS1063a
can operate in three different operation modes:
decoder, encoder or codec mode. In decoder
mode VS1063a receives its input bitstream
through a serial input bus. The input stream
is decoded and passed through an 18-bit dig-
ital volume control to an oversampling sigma-
delta DAC. Decoding is controlled via a serial
control bus. In addition to the basic decod-
ing, it is possible to add application specific
features, like DSP effects, to the user RAM
memory, or even to load user applications.
In encoder mode VS1063a reads audio from
its analog inputs, optionally compresses the
data, which then can be read by the host pro-
cessor. In codec mode VS1063a offers a full-
duplex audio interface.

When used as a standalone processor the
VS1063a can boot either from SPI EEPROM
or FLASH memory. Alternatively code and
data can be provided by a host controller.

User Code

Users can write their own user interface or
signal processing code for the VS1063a us-
ing VSIDE (VLSI Solution’s Integrated Devel-
opment Environment).

As a default, there are 16 KiB of free code
RAM and about 4 KiB of free data RAM for
user plugin applications. Depending on the
application, the data RAM can be expanded
to the full 80 KiB that is available in VS1063a.

Version: 1.31, 2017-10-06 2

VS1063a Prog. Guide
CONTENTS

Contents

VS1063 Programmer’s Guide Front Page 1

Table of Contents 3

List of Figures 5

1 Introduction 6

2 Disclaimer 6

3 Definitions 7

4 Interfacing with VS1063a Using a Microcontroller 8
4.1 One-Byte SPI Transfer Example . 8
4.2 The SCI (SPI) Bus . 9

4.2.1 Example SCI Read / Write Implementation 9
4.2.2 SCI Bus Waveforms . 10
4.2.3 SCI Bus Access Example . 11

4.3 The SDI (SPI) Bus . 12
4.3.1 SCI Bus Waveform . 12

5 Writing Plugins 13
5.1 Plugin Memory Maps . 13

5.1.1 Plugin Instruction Memory Map (32-bit words) 13
5.1.2 Plugin X Data Memory Map (16-bit words) 13
5.1.3 Plugin Y Data Memory Map (16-bit words) 14

5.2 Implementing a Plugin to the Decoder Audio Path 14
5.2.1 Loading and Activating the Plugin . 15
5.2.2 Audio Path Plugin Call Conventions 15
5.2.3 Simple Example Audio Path Plugin 16
5.2.4 Disabling the Audio Path Plugin . 17

5.3 Idle Hook Plugin . 18
5.4 Interrupt-Driven Plugin . 18

6 Writing User Applications that Take Full Control over VS1063a 19
6.1 Application Memory Maps . 19

6.1.1 Application Instruction Memory Map (32-bit words) 19
6.1.2 Application X Data Memory Map (16-bit words) 19
6.1.3 Application Y Data Memory Map (16-bit words) 20

6.2 Taking Control of VS1063a . 20
6.2.1 Taking Control of Interrupts . 21

7 Audio Format Specific Comments 22
7.1 Encoders . 22

7.1.1 VLSI Solution’s Ogg Vorbis Encoder VSOVE v2.00 22
7.1.2 VLSI Solution’s MP3 Encoder VSMPE v1.00 22

7.2 Decoders . 23
7.2.1 MP3 Decoder . 23

8 VS1063a Load File Formats 24

Version: 1.31, 2017-10-06 3

VS1063a Prog. Guide
CONTENTS

8.1 VS1063a Plugin Format . 24
8.1.1 Example VS1063a Microcontroller Plugin Decoder 25

8.2 VS1063a Image Format . 26
8.2.1 Example VS1063a Microcontroller Boot Image Decoder 27

9 Latest Document Version Changes 28

10 Contact Information 29

Version: 1.31, 2017-10-06 4

VS1063a Prog. Guide
LIST OF FIGURES

List of Figures

1 One-byte data transfer using SpiTransfer() . 8
2 WriteSci() waveform . 10
3 ReadSci() waveform . 10
4 WriteSdi() waveform . 12
5 Decoder data flow of VS1063a with the user plugin stage highlighted 14

Version: 1.31, 2017-10-06 5

VS1063a Prog. Guide
2 DISCLAIMER

1 Introduction

This is the VS1063a Programmer’s Guide. Its intent is to provide the reader with a sufficient
amount of information to write programs for VS1063a.

After definitions in Chapter src:definitions), interfacing VS1063a with a microcontroller is pre-
sented in Chapter 4.

Programs can be written either as plugins which function in cooperation with VS1063a’s existing
decoder framework as shown in Chapter 5, or as applications that take over the whole system
as shown in Chapter 6.

Some audio format specific comments are presented in Chapter 7.

The VS1063a plugin and image load file formats are explained in Chapter 8.

2 Disclaimer

The VS10xx Programmer’s Guide represents VLSI Solution’s best attempt at giving a VS1063a
programmer as much information as possible to help creating their own plugins and applica-
tions.

Nevertheless, VLSI Solution is not responsible for any errors, omissions, or misleading state-
ments in this document.

This guide is the third part of a three-part entity, consisting of VS1063a Datasheet, VS1063a
Hardware Guide, and VS1063a Programmer’s Guide. To avoid repetition, it is assumed that
the reader of this guide has already familiarized himself with the other two documents.

Version: 1.31, 2017-10-06 6

VS1063a Prog. Guide
3 DEFINITIONS

3 Definitions

Application Standalone application that takes over the normal functionality of VS1063a. See
Chapter 6 for details.

ABR Average BitRate. Bitrate of stream may vary locally, but will stay close to a given number
when averaged over a longer time.

B Byte, 8 bits.

b Bit.

CBR Constant BitRate. Bitrate of stream will be the same for each compression block.

Ki “Kibi” = 210 = 1024 (IEC 60027-2).

Mi “Mebi” = 220 = 1048576 (IEC 60027-2).

Plugin A piece of software that works in tandem with the VS1063a operating system. See
Chapter 5 for details.

SCI Serial Control Interface, an SPI bus for VS1063a control.

SDI Serial Data Interface, an SPI bus for VS1063a bitstream data.

VBR Variable BitRate. Bitrate will vary depending on the complexity of the source material.

VS_DSP VLSI Solution’s DSP core.

VSIDE VLSI Solution’s Integrated Development Environment.

W Word. In VS_DSP, instruction words are 32-bits and data words are 16-bits wide.

Version: 1.31, 2017-10-06 7

VS1063a Prog. Guide
4 INTERFACING WITH VS1063A USING A MICROCONTROLLER

4 Interfacing with VS1063a Using a Microcontroller

This chapter explaings how to interface with the VS1063a using SCI and SDI buses, which
both are special cases of the SPI bus. This document will show how to access the buses using
microcontroller software written in C language. For details on bus signals, see the VS1063a
Datasheet Chapter “SPI Buses”.

4.1 One-Byte SPI Transfer Example

To be able to do SCI and SDI operations, we’ll first define a basic one-byte SPI transfer function:

#define CONFIGURE_AS_OUTPUT(p) {/* Do what's needed*/}

#define CONFIGURE_AS_INPUT(p) {/* Do what's needed*/}

#define OUT_SET_HIGH(p) {p = 1;}

#define OUT_SET_LOW(p) {p = 0;}

#define IN_IS_HIGH(p) (p)

// Software SPI port: Shift 8 bits in and out using a software SPI port

u_int8 SpiTransfer(u_int8 outdata) {

u_int8 b=0;

u_int8 indata=0;

for (b=0; b<8; b++) {

if (outdata & 0x80) { // Leftmost bit first

OUT_SET_HIGH(PIN_MOSI);

} else {

OUT_SET_LOW(PIN_MOSI);

}

outdata <<= 1; // Shift outdata bits left

OUT_SET_HIGH(PIN_SCK); // Clock high

indata <<= 1; // Shift indata bits left

if (IN_IS_HIGH(PIN_MISO)) {

indata |= 1; // Set rightmost bit high

}

OUT_SET_LOW(PIN_SCK); // Clock low

}

return indata; // Return the result byte to caller

}

SCK

MOSI

MISO DI7

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

DI0DI1DI2DI3DI4DI5DI6

Figure 1: One-byte data transfer using SpiTransfer()

Figure 1 shows the waveforms created by calling SpiTransfer(). Parameter outdata goes to
DO7. . . 0. The Input data from DI7. . . 0 is collected to indata and returned by the function.

Version: 1.31, 2017-10-06 8

VS1063a Prog. Guide
4 INTERFACING WITH VS1063A USING A MICROCONTROLLER

4.2 The SCI (SPI) Bus

The SCI (SPI) bus is a control and command bus. Every operation consists of four bytes:
instruction, address, and two data bytes. Instruction and address bytes are always offered by
the microcontroller. If instruction is WriteCommand (2), then also data bytes come from the
microcontroller. If instruction is ReadCommand (3), then data bytes come from VS1063a.

4.2.1 Example SCI Read / Write Implementation

Using the SpiTransfer() function, here is how to implement register write and read functions:

// VS10XX Operations //

#define VS_WRITE_COMMAND 0x02 /** VS10xx SCI Write Command byte is 0x02 */

#define VS_READ_COMMAND 0x03 /** VS10xx SCI Read Command byte is 0x03 */

/** Put the VS player chip in reset */

#define VsPutInReset() {OUT_SET_LOW(VS_XRESET);}

/** Release the VS player chip from reset */

#define VsReleaseFromReset() {OUT_SET_HIGH(VS_XRESET);}

/** Pull the VS10xx Data Chip Select line Low */

#define VsSelectData() {OUT_SET_LOW(VS_XDCS);}

/** Pull the VS10xx Data Chip Select line High */

#define VsDeselectData() {OUT_SET_HIGH(VS_XDCS);}

void WriteSci(u_int8 reg, u_int16 val) {

while (!IN_IS_HIGH(PIN_DREQ)) { // Cannot send data if DREQ is low

WaitFor10MSec();

}

OUT_SET_LOW(PIN_XCS); // Control Chip Select Low

SpiTransfer(VS_WRITE_COMMAND); // WRITE command

SpiTransfer(reg); // Register number

SpiTransfer((u_int8)(val >> 8)); // High Byte

SpiTransfer((u_int8)(val & 0xff)); // Low Byte

OUT_SET_HIGH(PIN_XCS); // Control Chip Select High

}

unsigned int ReadSci(u_int8 reg) {

u_int8 inHigh;

u_int8 inLow;

while (!IN_IS_HIGH(PIN_DREQ)) { // Cannot send data if DREQ is low

WaitFor10MSec();

}

OUT_SET_LOW(PIN_XCS); // Control Chip Select Low

SpiTransfer(VS_READ_COMMAND); // READ command

SpiTransfer(reg); // Register number

Version: 1.31, 2017-10-06 9

VS1063a Prog. Guide
4 INTERFACING WITH VS1063A USING A MICROCONTROLLER

inHigh = SpiTransfer(0xff); // High Byte

inLow = SpiTransfer(0xff); // Low Byte

OUT_SET_HIGH(PIN_XCS); // Control Chip Select High

return ((u_int16)inHigh << 8) + inLow;

}

4.2.2 SCI Bus Waveforms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 30 3114 15 16 17

0 0 0 0 0 0 1 0 0 0 0

3 2 1 0 1 0

X

address

XCS

SCK

SI

15 14

data out

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0SO 0 0 0 0 X

0

instruction (write)

DREQ

execution

Figure 2: WriteSci() waveform

Figure 2 shows the waveform for function WriteSci(). SO is MOSI, and SI is MISO.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 30 3114 15 16 17

0 0 0 0 0 0 1 1 0 0 0 0

3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 1 0

X

instruction (read) address
data out

XCS

SCK

SI

SO

don’t care don’t care

DREQ

execution

Figure 3: ReadSci() waveform

Figure 3 shows the waveform for function SciRead(). SO is MOSI, and SI is MISO. The “don’t
care” bits for SI are all ones in this implementation of SciRead().

Version: 1.31, 2017-10-06 10

VS1063a Prog. Guide
4 INTERFACING WITH VS1063A USING A MICROCONTROLLER

4.2.3 SCI Bus Access Example

Now that the needed support functions have been presented, below is a very simple program
that reads register SCI_STATUS, then sets SCI_VOL to 0x0a0a.

#define SCI_STATUS 0x1 // Definitions from VS10xx Datasheet

#define SCI_VOL 0xB // Chapter "SCI Registers"

void main(void) {

u_int16 st;

// Initialize SPI pins for VS10XX communication

CONFIGURE_AS_INPUT(PIN_MISO);

CONFIGURE_AS_OUTPUT(PIN_MOSI);

CONFIGURE_AS_OUTPUT(PIN_SCK);

CONFIGURE_AS_OUTPUT(PIN_XCS);

OUT_SET_LOW(PIN_SCK);

OUT_SET_HIGH(PIN_XCS);

st = VsReadRegister(SCI_STATUS); // Read VS10xx status

VsWriteRegister(SCI_VOL, 0x0a0a); // Set volume to -5 dB of max

}

Version: 1.31, 2017-10-06 11

VS1063a Prog. Guide
4 INTERFACING WITH VS1063A USING A MICROCONTROLLER

4.3 The SDI (SPI) Bus

Like SCI, also SDI is an SPI bus. However, SDI is meant for simple, unstructured bitstream
transfer for e.g. MP3 files.

Below is a pseudocode example of how to send up to 32 bytes of data to SDI:

// WriteSdi sends up to 32 bytes of data to VS10xx

int WriteSdi(const u_int8 *d, const u_int8 n) {

int i;

if (n > 32) {

return -1; // Error

}

while (!IN_IS_HIGH(PIN_DREQ)) { // Cannot send data if DREQ is low

WaitFor10MSec();

}

OUT_SET_LOW(PIN_XDCS); // Not needed if SM_SHARED is set!

for (i=0; i<32; i++) {

SpiTransfer(*d++); // Transmit byte

}

OUT_SET_HIGH(PIN_XDCS); // Not needed if SM_SHARED is set!

return 0;

}

4.3.1 SCI Bus Waveform

DCLK

SDATA D7 D6 D5 D4 D3 D1D2 D0 D7 D6 D5 ... D3 D1D2 D0

Byte XByte 1 Byte 2

...

XDCS

Figure 4: WriteSdi() waveform

Figure 4 shows the waveform for function WriteSdi(). “Byte X” is WriteSdi() parameter n. If
SM_SHARED is set to 1, then SDATA is MOSI and DCLK is SCK.

Version: 1.31, 2017-10-06 12

VS1063a Prog. Guide
5 WRITING PLUGINS

5 Writing Plugins

In the context of VS1063a, a plugin is a piece of software that coexists with the audio decoder
framework of VS1063a.

Plugins may modify decoded audio data or inject new data into the audio path, use free CPU
time. They may have limited control over some interrupts.

Plugins have to take into account that the operating system is running: they cannot use any
memory areas allocated by the system and they should use as little processing power as pos-
sible.

VS1063a doesn’t have hardware resource allocation routines in its operating system, so if the
user wants to access VS1063a hardware, he has to make sure to use only such parts of it that
are not already used by the system. An example of this are interrupts: some are used by the
operating system, and some are free to use.

5.1 Plugin Memory Maps

This chapter presents free memory maps for plugins. All units are in words.

5.1.1 Plugin Instruction Memory Map (32-bit words)

Free instruction memory for plugins
Start Addr Length Description

0x50 0xFB0 Full I memory except jump vectors

5.1.2 Plugin X Data Memory Map (16-bit words)

Free X data memory for plugins
Start Addr Length Description

0x1800 0x80 User area
0x1C80 0x180 Extra area 1
0x1E40 0x1C0 Extra area 2

Version: 1.31, 2017-10-06 13

VS1063a Prog. Guide
5 WRITING PLUGINS

5.1.3 Plugin Y Data Memory Map (16-bit words)

Free Y data memory for plugins
Start Addr Length Description

0x1800 0x80 User area
0xFA14 0x3EC Extra area

5.2 Implementing a Plugin to the Decoder Audio Path

A useful case of cooperative programs is plugin user applications.

AAC, FLAC

5−channel

Audio
PauseMono

BassUser
control
Treble Speed

EarSpeaker
equalizer

ADC

0

SCI_VOL

BitstreamSDI bus

SCI bus

Mic/Line In

PCM audio

ST_AMPLITUDE=0SB_AMPLITUDE=0

AIADDR != 0

AIADDR=0

EQ5 Enable = 1

ST_AMPL=0 &

SB_AMPL=0 &

EarSpeakerLevel!=0 &

earSpeakerLevel=0

ST_AMPLITUDE!=0SB_AMPLITUDE != 0

adMixerGain or

pcmMixerVol

Bitstream

shifter

FIFO

enhancer

FIFO
SPEEDSHIFTER_ON=0

SPEEDSHIFTER_ON=0&

SPEEDSHIFTER_ON=1

MONO_OUTPUT=1

MONO_OUTPUT=0

PAUSE_ON

PCMMIXER_ON=1&

ADMIXER_ON=1

ADMIXER_ON=0

To DACDAC
SRC

Sidestream
SDM

WAV, MP2/3,
OGG, WMA,

plugin

PCMMIXER_ON=0 & ADMIXER_ON=0

Figure 5: Decoder data flow of VS1063a with the user plugin stage highlighted

User plugins may insert themselves in the decoding signal path, as shown in Figure 5. (For
annotations for other blocks in this figure, see the VS1063a Datasheet.)

Plugins also get information on whenever SCI_AICTRL0 through SCI_AICTRL3 have been
accessed (either read from or written to), or whenever the samplerate changes.

Version: 1.31, 2017-10-06 14

VS1063a Prog. Guide
5 WRITING PLUGINS

5.2.1 Loading and Activating the Plugin

Loading a plugin is initiated by writing a base address to register SCI_WRAMADDR. The pro-
gram and its data is then loaded by writing data to register SCI_WRAM.

The plugin is activated by writing its start address to register SCI_AIADDR. Whenever a power-
down, hardware reset or software reset has happened, the plugin needs to be reloaded and
restarted. The reason for this is that whenever VS1063a is reset, it will clear all its data areas
so the plugin will not be intact anymore.

Note: SCI_AIADDR will not be cleared when a software reset has been performed, but you still
need to reload and reactivate the plugin.

5.2.2 Audio Path Plugin Call Conventions

The C prototype for the user plugin is as follows:

s_int16 Plugin(register s_int16 __i0 **data, register u_int16 __a1 mode, register

u_int16 __a0 n);

Legal values for mode are described in the following table. The user may choose how many of
the different cases are handled. All unhandled values for mode should return n.

Symbol Value Description
APPL_RESET 0 Reset all values, n is samplerate
APPL_AUDIO 1 Audio samples offered, n is number of L/R sample pairs
APPL_W0 2 SCI_AICTRL0 has been written to, n is register value
APPL_W1 3 SCI_AICTRL1 has been written to, n is register value
APPL_W2 4 SCI_AICTRL2 has been written to, n is register value
APPL_W3 5 SCI_AICTRL3 has been written to, n is register value
APPL_R0 6 SCI_AICTRL0 has been read from, n is register value
APPL_R1 7 SCI_AICTRL1 has been read from, n is register value
APPL_R2 8 SCI_AICTRL2 has been read from, n is register value
APPL_R3 9 SCI_AICTRL3 has been read from, n is register value
APPL_BITSTREAM 10 Obsolete, ignore
APPL_OUT_OF_DATA 11 Stream input buffer has starved

Note: It is guaranteed that the first call to the user plugin is always with mode = APPL_RESET.

Note: When mode = APPL_RESET, the user function should return its output samplerate if it is
different from the input samplerate. Otherwise, the user function may return 0.

Note: When returning from APPL_AUDIO, the user function should return the number of sam-
ples it created in the function. If the number of samples did not change, returning 0 is also

Version: 1.31, 2017-10-06 15

VS1063a Prog. Guide
5 WRITING PLUGINS

acceptable. If the number of samples did grow, samples must be written to some other location
than what is pointed to by **d. This new pointer must be returned in *d.

Note: If mode == APPL_OUT_OF_DATA, then n is 0 if there still are still at least 64 stereo
samples in the audio output buffer. Otherwise it is 1. If the function returns non-zero, then 32
empty stereo samples will be inserted into the output audio stream. So, in a typical case it is
convenient to just return n.

Input data is always interleaved stereo, left channel first.

Volume control is placed after any user plugins. Thus it is generally a better idea to only write
filters that attenuate some frequencies and don’t emphasize any. To compensate for the lower
volume, main volume setting may be turned higher.

5.2.3 Simple Example Audio Path Plugin

This very simple plugin attenuates its input signal by a given number of decibels. The user
can give the number of decibels for the left channel in SCI_AICTRL0 and right channel in
SCI_AICTRL1.

auto u_int16 DbToLin(register u_int16 dB);

s_int16 MyPlugin(register s_int16 __i0 **data,

register u_int16 __a1 mode, register u_int16 __a0 n) {

static u_int16 multL, multR; // Multipliers, 32768 equals 1.0

switch (mode) {

case APPL_RESET: // *** Reset/initialize; REQUIRED!

multL = DbToLin(PERIP(SCI_AICTRL0)); // Convert decibel to linear, left

multR = DbToLin(PERIP(SCI_AICTRL1)); // Convert decibel to linear, right

return 0; // Do not change samplerate

break; // break not required, written for clarity

case APPL_AUDIO: // *** Actual audio data; REQUIRED!

{

int i;

s_int16 *d = *data;

for (i=0; i<n; i++) {

*d = ((s_int32)(*d) * multL) >> 15; // Apply volume to left channel

d++;

*d = ((s_int32)(*d) * multR) >> 15; // Apply volume to right channel

d++;

} /* for (i=0; i<n; i++) */

}

break;

Version: 1.31, 2017-10-06 16

VS1063a Prog. Guide
5 WRITING PLUGINS

case APPL_W0: // *** SCI_AICTRL0 has been written to

multL = DbToLin(n); // Convert decibel scale to linear, left

break;

case APPL_W1: // *** SCI_AICTRL1 has been written to

multR = DbToLin(n); // Convert decibel scale to linear, right

break;

} /* switch(mode) */

return n; // Default message answer is n

} /* MyPlugin() */

const u_int16 dBTab[6] = {

32768, 29193, 26008, 23170, 20643, 18390

};

auto u_int16 DbToLin(register u_int16 dB) {

if (dB >= 90)

return 0;

return dBTab[dB % 6] >> (dB/6);

}

5.2.4 Disabling the Audio Path Plugin

The plugin can be disabled by writing 0 to SCI_AIADDR through SCI.

The plugin can also turn itself off. However, in this case writing to SCI_AIADDR is not suffi-
cient. The application needs to write NULL to the pointer variable applAddr (ASM convention:
_applAddr). The type for applAddr is shown below:

extern s_int16 (*applAddr)(s_int16 register __i0 **d, s_int16 register __a1 mode,

s_int16 register __a0 n);

Version: 1.31, 2017-10-06 17

VS1063a Prog. Guide
5 WRITING PLUGINS

5.3 Idle Hook Plugin

Whenever VS1063a has spare time, it will first jump to an idle hook, then halt until the next
interrupt is received. The idle hook pointer is located at instruction address 0. Normally the
idle hook pointer contains a jump command to a dummy hook which does nothing. Address 1
contains a “nop” instruction (needed by VS_DSP because it almost always executes the next
instruction after a control transfer instruction).

To take control of the idle hook, first create a function with the following prototype:

void MyIdleHook(void);

Then, write the assembler command “J _MyIdleHook” to instruction address 0. This is done
with the formula i = 0x28000000 +a× 0x40, where a is the address of MyIdleHook() and i is the
resulting instruction codeword.

Example: MyIdleHook() has been compiled to address 0x50.
Load that plugin into RAM memory of VS1063a.
Then modify the idle hook: In this case d = 0x28000000 + 0x50 × 0x40 = 0x28001400.
Now you can write 0x8000 to register SCI_WRAMADDR to set instruction address 0.
After that write first 0x1400, then 0x2800 to register SCI_WRAM. For more information on how
to use registers SCI_WRAM and SCI_WRAMADDR, see the VS1063a Datasheet.
Alternatively, if changing the vector using VS_DSP code, use the WriteIMem() function (or, if
using assembler, STI).

5.4 Interrupt-Driven Plugin

A plugin can take control of one or more of the system interrupts. However, it needs to take
care that it either replaces the existing interrupt with a version that does essentially the same
things required by the system, or that it finishes by jumping to the original interrupt.

Although more often useful when taking control over the whole system, cooperative plugins
may also sometimes take control of one or more interrupts. To see how to do that, and to see
which interrupts are not used by the operating system, see Chapter 6.2.1.

Version: 1.31, 2017-10-06 18

VS1063a Prog. Guide
6 WRITING USER APPLICATIONS THAT TAKE FULL CONTROL OVER VS1063A

6 Writing User Applications that Take Full Control over VS1063a

Full control user applications are programs that take over the system, then build their required
signal paths either from scratch, or partly using the ROM routines offered by the VS1063a ROM
firmware.

VS1063a contains such versatile hardware features that it is not possible to exhaustively go
though all the ways that the IC can be used (and misused). Nevertheless, this chapter will
discuss one way of how to take control over the whole chip.

When the user takes full control of the VS1063a he may use most of the memory areas and
hardware. For details of the accessible hardware, read the VS1063a Hardware Guide.

6.1 Application Memory Maps

This chapter presents free memory maps for application programs. All units are in words.

6.1.1 Application Instruction Memory Map (32-bit words)

Free instruction memory for applications
Start Addr Length Description

0x50 0xFB0 Full I memory except jump vectors.

6.1.2 Application X Data Memory Map (16-bit words)

Free X data memory for applications
Start Addr Length Description

0x400 0x1400 _xTemp
0x1800 0x80 User area
0x1C80 0x180 Extra area 1
0x1E40 0x1C0 Extra area 2
0x2080 0x1F80 Extra area 3

Version: 1.31, 2017-10-06 19

VS1063a Prog. Guide
6 WRITING USER APPLICATIONS THAT TAKE FULL CONTROL OVER VS1063A

6.1.3 Application Y Data Memory Map (16-bit words)

Free Y data memory for applications
Start Addr Length Description

0x1000 0x800 _g_dcthi
0x1800 0x80 User area
0x1C00 0x2400 _mallocAreaY
0xE000 0xA64 _earSpeaker1

0xE000 0xA40 _speedShift1

0xEA64 0xFB0 _heAac
0xFA14 0x3EC Extra area
0xFE00 0x200 _pcmFifo

1 These two effects use the same memory area. To be able to use this area, neither EarSpeaker
nor SpeedShift should be used.

6.2 Taking Control of VS1063a

There are many ways how to take control of VS1063a. Perhaps the most straightforward way
is to take the User Application approach, as explained in Chapter 5.2.

However, instead of a program that would act as a filter and return, the application would
typically start by disabling all interrupts, then running initializations including changing required
interrupt vectors if any, then activating those interrupts needed by the application.

Note: when the user application is called for the first time (and this is the time when we are
taking control of the whole system), and interrupt level is 1 or 2. Because of this, if you want to
use interrupts, you must not only set correct interrupt vectors and activate your own interrupts
using INT_ENABLE, but you also must write twice to register INT_GLOB_ENA (what value
you write doesn’t matter). For details of interrupt control registers, see the VS1063a Hardware
Guide.

Version: 1.31, 2017-10-06 20

VS1063a Prog. Guide
6 WRITING USER APPLICATIONS THAT TAKE FULL CONTROL OVER VS1063A

6.2.1 Taking Control of Interrupts

To take control of interrupts, the user first needs to write interrupt handlers. This cannot be
directly done in the C language: stack store and restore operations as well as interrupt reacti-
vation will need to be done in Assembly language.

After an interrupt routine has been written, the corresponding interrupt vector needs to be
rerouted to the user’s own routine. Interrupt vectors are stored in instruction RAM memory
starting from address 0x20, as shown in the following table:

Interrupt vectors
Name Address Used Default Description
VEC_DAC 0x20 Yes jmpi dac_int,(i6)+1 DAC
VEC_SCI 0x21 Yes jmpi sci_int,(i6)+1 SCI
VEC_SDI 0x22 Yes jmpi _sdi_int,(i6)+1 SDI
VEC_ADC 0x23 Y/N1 jmpi modu_int,(i6)+1 ADC
VEC_TX 0x24 No jmpi _empty_int,(i6)+1 UART TX
VEC_RX 0x25 Yes jmpi rx_int,(i6)+1 UART RX
VEC_TIM0 0x26 No jmpi _empty_int,(i6)+1 Timer 0
VEC_TIM1 0x27 No jmpi _empty_int,(i6)+1 Timer 1
VEC_SRC 0x28 Y/N2 jmpi src_int,(i6)+1 SampleRate Converter
VEC_SDM 0x29 Y/N3 jmpi sdm_int,(i6)+1 Sigma Delta Modulator

1 Active in codec and encoding mode.
2 Active in encoding mode.
3 Active if PCM Mixer or AD Mixer is used.

To replace an interrupt vector, calculate i = 0x2A00000E+a × 0x40, where a is the address of
your own interrupt handler and i is the resulting instruction codeword.

Note: “JMPI” is the only instruction on VS_DSP that doesn’t have delay slot code execution.
Because of this it is also the only VS_DSP instruction that takes two clock cycles to execute
instead of one.

Example: How to take control over the DAC interrupt. First disable the DAC interrupt by clearing
bit 0 of register INT_ENABLE. Do your other initializations. Then calculate your interrupt vector.
E.g. if your own interrupt is at instruction address 0x50, then i =0x2A00000E + 0x50 × 0x40
= 0x2A00140E. Write this value to instruction address 0x20. Then reactivate the interrupt by
setting bit 0 of INT_ENABLE. (Note that disabling and re-enabling the interrupt isn’t necessarily
needed if you don’t care that the old interrupt may occur during your initializations.)

Version: 1.31, 2017-10-06 21

VS1063a Prog. Guide
7 AUDIO FORMAT SPECIFIC COMMENTS

7 Audio Format Specific Comments

7.1 Encoders

7.1.1 VLSI Solution’s Ogg Vorbis Encoder VSOVE v2.00

VLSI Solution’s Ogg Vorbis Encoder VSOVE v2.00 is a continuation of the proprietary VS1053b
Ogg Vorbis encoder originally published in 2007.

The encoder uses short and long frames as shown in the following table. (Note! A 1024 sample
window in this table corresponds to what the Ogg Vorbis community calls 2048 sample window.)

Ogg Vorbis window lengths as function of samplerate
Nominal Profile / Hz fs / Hz Short Win Long Win

8000 0...9999 64 256
16000 10000...29999 128 512
32000 30000...39999 128 1024
44100 40000...65535 128 1024

Channel coupling is always used for stereo streams. Dual-channel audio is not supported.

For stereo streams, channel coupling is always used (as opposed to MP3, this is a lossless
operation in Ogg Vorbis). However, to save space, part of the audio spectrum is only encoded
as intensity stereo. The frequency threshold for intensity stereo depends on the quality setting.
For quality setting 0, practically all stereo information above 100 Hz is encoded as intensity
stereo. Dual-channel audio like multilingual transmissions using one stereo stream is neither
supported nor recommended.

VSOVE uses VLSI Solution’s proprietary PAMM psycho-acoustic model. PAMM is a non-
iterative, constant-time, processor-time efficient real-time algorithm that is capable of near CD
quality at bitrates averaging around 140 kbit/s.

VSOVE supports only VBR and makes no attempts at equalizing its output bitrate: the output
file size purely depends on the user-chosen quality setting.

7.1.2 VLSI Solution’s MP3 Encoder VSMPE v1.00

VSMPE is VLSI Solution’s proprietary MP3 encoder first time published for the VS1063 in 2011.

VSMPE supports VBR and CBR.

VSMPE only uses long blocks (576 samples per block).

Version: 1.31, 2017-10-06 22

VS1063a Prog. Guide
7 AUDIO FORMAT SPECIFIC COMMENTS

For stereo audio, joint-stereo streams are always created. The encoder determines on a frame-
by-frame basis whether to use LR-stereo or MS-stereo. Dual-channel audio like multilingual
transmissions using one stereo stream is neither supported nor recommended.

VSMPE uses an enhanced and adapted version of the PAMM psycho-acoustic model originally
devoloped for VLSI Solution’s Ogg Vorbis encoder. The new version of PAMM includes fast
bitrate control which makes it possible to create CBR bitstreams.

When CBR is being used, lowest and highest bitrates may lead into inefficient encoding: lowest
bitrates because the encoder needs to make it sure that the maximum frame length never is
exceeded, and highest bitrates because bit reservoir cannot be trusted too much.

No attempts are made at encoding frequencies over 16 kHz, even with the highest quality set-
tings and samplerates. The reason for this is an omission in the MP3 format specification which
makes it difficult to encode these frequencies with reasonable accuracy.

7.2 Decoders

7.2.1 MP3 Decoder

VS1063a’s MP3 decoder is a full-accuracy decoder.

Version: 1.31, 2017-10-06 23

VS1063a Prog. Guide
8 VS1063A LOAD FILE FORMATS

8 VS1063a Load File Formats

8.1 VS1063a Plugin Format

A plugin file (“.PLG”) contains an unsigned 16-bit C source code vector called plugin. The file
is in an RLE compressed format. An example plugin vector is shown below:

const u_int16 plugin[10] = { /* Compressed plugin */

0x0007, 0x0001, 0x8260,

0x0006, 0x0002, 0x1234, 0x5678,

0x0006, 0x8004, 0xabcd,

};

The vector is decoded as follows:

1. Read register address number addr and repeat number n.
2. If (n & 0x8000U), write the next word (n & 0x7FFFU) times to register addr.
3. Else write next n words to register addr.
4. Continue until table has been exhausted.

The example vector should generate the following calls:

WriteSci(0x7, 0x8260U);

WriteSci(0x6, 0x1234U);

WriteSci(0x6, 0x5678U);

WriteSci(0x6, 0xABCDU);

WriteSci(0x6, 0xABCDU);

WriteSci(0x6, 0xABCDU);

WriteSci(0x6, 0xABCDU);

Version: 1.31, 2017-10-06 24

VS1063a Prog. Guide
8 VS1063A LOAD FILE FORMATS

8.1.1 Example VS1063a Microcontroller Plugin Decoder

Assuming the vector is in vector u_int16 plugin[X], a full decoder in C language is provided
below:

/* This support function that writes one word through SCI is needed. */

void WriteSci(u_int8 addr, u_int16 value);

void LoadPlugin1063(const u_int16 *d, u_int16 len) {

int i = 0;

while (i<len) {

unsigned short addr, n, val;

addr = d[i++];

n = d[i++];

if (n & 0x8000U) { /* RLE run, replicate n samples */

n &= 0x7FFF;

val = d[i++];

while (n--) {

WriteSci(addr, val);

}

} else { /* Copy run, copy n samples */

while (n--) {

val = d[i++];

WriteSci(addr, val);

}

}

}

}

The loader function can be called like this:

LoadPlugin1063(plugin, sizeof(plugin)/sizeof(plugin[0]));

Version: 1.31, 2017-10-06 25

VS1063a Prog. Guide
8 VS1063A LOAD FILE FORMATS

8.2 VS1063a Image Format

The VS1063a image format is a bootable / loadable binary format with a three-byte header,
followed by one or more boot records. The default image file suffix is “.IMG”.

The 3-byte header is shown below:

VS1063a Boot Header, begins the file
Name Bytes Description
HEADER 3 “P&H” (0x50, 0x26, 0x48)

A boot record is shown below:
VS1063a Boot Record, from 1 to n, last is always TYPE = Execute

Name Bytes Description
TYPE 1 0 = Instruction memory

1 = X data memory
2 = Y data memory
3 = Execute

L1 L0 2 LEN = 256×L1 + L0
A1 A0 2 ADDR = 256×A1 + A0
D1 D0 LEN DATA = 256×D1 + D0, repeat LEN/2 times

The last boot record is always with TYPE = Execute. When an execute record is found, ADDR
is the start address of the application.

The VS1063a boot sequence will skip any unknown records.

Version: 1.31, 2017-10-06 26

VS1063a Prog. Guide
8 VS1063A LOAD FILE FORMATS

8.2.1 Example VS1063a Microcontroller Boot Image Decoder

/* This support function that writes one word through SCI is needed. */

void WriteVS10xxRegister(u_int16 addr, u_int16 value);

#define TYPE_I 0

#define TYPE_X 1

#define TYPE_Y 2

#define TYPE_E 3

/* Returns either 0xFFFF for error or image file start address.

For compactness does NOT check if fgetc() fails! */

auto u_int16 SpiLoadImageInto1063(register __i0 FILE *fp) {

s_int16 type;

if (fgetc(fp) != 'P' || fgetc(fp) != '&' || fgetc(fp) != 'H')

return 0xFFFF;

while ((type = fgetc(fp)) >= 0 && type < 4) {

static const u_int16 offsets[3] = {0x8000U, 0x0U, 0x4000U};

u_int16 len, addr;

/* Get length and address of the record */

len = fgetc(fp) << 8;

len |= fgetc(fp);

addr = fgetc(fp) << 8;

addr |= fgetc(fp);

/* If execute record: return with start address */

if (type == TYPE_E)

return addr;

/* Map address to WRAMADDR register space */

if (type != TYPE_Y || addr < 0xE000)

addr += offsets[type];

/* Set write address */

WriteSci(SCIR_WRAMADDR, addr + offsets[type]);

/* Convert len from bytes to words, then write data */

len >>= 1;

while (len--) {

u_int16 data = (u_int16)fgetc(fp) << 8;

data |= fgetc(fp);

WriteSci(SCIR_WRAM, data);

};

} /* while (type >= 0 && type < 4) */

return 0xFFFF; /* Pass-through indicates error condition */

}

Version: 1.31, 2017-10-06 27

VS1063a Prog. Guide
9 LATEST DOCUMENT VERSION CHANGES

9 Latest Document Version Changes

This chapter describes the latest and most important changes to this document.

Version 1.31, 2017-10-06

• Minor corrections.

Version 1.20, 2016-03-24

• Changed name of the document to better reflect what VS1063a is.

Version 1.15, 2014-12-19

• Updated telephone number in Chapter 10, Contact Information.

Version 1.02, 2012-12-05

• Made function names compatible with other recent VLSI documentation.

• Corrected Plugin Instruction Memory Map (Chapter 5.1.1) and Application Instruction
Memory Map (Chapter 6.1.1).

• Corrected typecasting in return statement of function ReadSci() in Chapter 4.2.1.

• Added waveform images for a single-byte SPI transfer (Figure 1), an SCI Write opera-
tion (Figure 2), an SCI Read operation (Figure 3), and a multi-byte SDI Write operation
(Figure 4).

• Removed preliminary status.

Version 0.40, 2011-09-02

• Minor corrections.

Version 0.30, 2011-05-20

• First publication.

• Still missing chapters: ROM Functions, VS1063a Startup.

Version: 1.31, 2017-10-06 28

VS1063a Prog. Guide
10 CONTACT INFORMATION

10 Contact Information

VLSI Solution Oy
Entrance G, 2nd floor

Hermiankatu 8
FI-33720 Tampere

FINLAND

URL: http://www.vlsi.fi/
Phone: +358-50-462-3200

Commercial e-mail: sales@vlsi.fi

For technical support or suggestions regarding this document, please participate at
http://www.vsdsp-forum.com/

For confidential technical discussions, contact
support@vlsi.fi

Version: 1.31, 2017-10-06 29

	VS1063 Programmer's Guide Front Page
	Table of Contents
	List of Figures
	Introduction
	Disclaimer
	Definitions
	Interfacing with VS1063a Using a Microcontroller
	One-Byte SPI Transfer Example
	The SCI (SPI) Bus
	Example SCI Read / Write Implementation
	SCI Bus Waveforms
	SCI Bus Access Example

	The SDI (SPI) Bus
	SCI Bus Waveform

	Writing Plugins
	Plugin Memory Maps
	Plugin Instruction Memory Map (32-bit words)
	Plugin X Data Memory Map (16-bit words)
	Plugin Y Data Memory Map (16-bit words)

	Implementing a Plugin to the Decoder Audio Path
	Loading and Activating the Plugin
	Audio Path Plugin Call Conventions
	Simple Example Audio Path Plugin
	Disabling the Audio Path Plugin

	Idle Hook Plugin
	Interrupt-Driven Plugin

	Writing User Applications that Take Full Control over VS1063a
	Application Memory Maps
	Application Instruction Memory Map (32-bit words)
	Application X Data Memory Map (16-bit words)
	Application Y Data Memory Map (16-bit words)

	Taking Control of VS1063a
	Taking Control of Interrupts

	Audio Format Specific Comments
	Encoders
	VLSI Solution's Ogg Vorbis Encoder VSOVE v2.00
	VLSI Solution's MP3 Encoder VSMPE v1.00

	Decoders
	MP3 Decoder

	VS1063a Load File Formats
	VS1063a Plugin Format
	Example VS1063a Microcontroller Plugin Decoder

	VS1063a Image Format
	Example VS1063a Microcontroller Boot Image Decoder

	Latest Document Version Changes
	Contact Information

