, R %lppll«\tlon not

Z].log' Z80-CPU Systems Design Series

The Z80°Family
Program Interrupt Structure

MAY 1978

THE 7280 FAMILY PROGRAM
INTERRUPT STRUCTURE

TABLE OF CONTENTS

PAGE
INTRODUCTION. ® 5.0 0 0 0006006000050 008008000000 00000 1
INTERRUPT PROCESSING. ® &6 0 ¢ 0 0000000080000 s0 000 2

NON-MASKABLE INTERRUPT...ccccececscsccscsncss 4
MASKABLE INTERRUPTS...¢ceceecocssccsscssnsoas 8
INTERRUPT PRIORITY....ceveccccocsoncosnscsnns 1
INTERRUPT NESTING. .ceoescsesssccasscansncoose 15
INTERRUPT OVERHEAD. .. .ccceencecncessoonsonsscs 19

INTERRUPT ACKNOWLEDGE AND
DAISY CHAIN PROPAGATION..ccccssssoscccccsassss 21

HALT EXIT USING INTERRUPTS....ceeeesccccccnces 28

CONTROLLER DESIGN TECHNIQUES....esceocacoasas 28

Note: The following Application Note assumes a basic
knowledge of the 280 Microprocessor family. The
Zilog literature listed below is recommended as
reference material:

280-CPU Technical Manual
Z80-Assembly Language Programming Manual

Z80-PI0 Technical Manual
Z80-CTC Technical Manual

THE 7280 FAMILY PROGRAM INTERRUPT STRUCTURE

INTRODUCTION

The goal of an efficient interrupt system is to handle

all peripheral devices with a minimum amount of response
time and overhead. This overhead is composed of

recognizing which device is requesting service, saving
the current status of the CPU, and branching to the
service routine. Having serviced the device, it is
necessary to restore the pre-interrupted conditions and
to return to the interrupted program. To service
multiple devices, a priority interrupt structure will be
necessary to optimize overall system performance.

In order to meet these goals, the 280 Family
incorporates one non-maskable and three software
maskable interrupt modes including a vectored interrupt
mechanism that offers very fast interrupt response by an
indirect call to the start of the device service routine
and the use of an alternate register bank to achieve
very fast context switching.

INTERRUPT PROCESSING

The acceptance and service of any interrupt is related
to the status of the Bus Request line (BUSRQ) and the
occurrence of the interrupt within the instruction
cycle. A Bus Request is used to request the CPU to put
address, data, and control lines into a high impedance
state usually in response to a pending Direct Memory
Access transfer (DMA). :

Figure 1 is a flow diagram detailing the standard
interrupt processing sequence.

The Z80 CPU will honor an external event according to
the following priority:

1. Bus Request
2. Non Maskable Interrupt (NMI)
3. Maskable Interrupt (INT)

The bus request line (BUSR(Q) will be sampled (Internal
CPU Bus Request Flip Flop Set if active (low)) and if
active, will be acknowledged at the end of a machine
cycle. If the last cycle is also the end of the
instruction, the CPU will recognize an interrupt
(non-maskable or maskable) by setting appropriate
internal flip flops, but will first service any pending
Bus Regquest. At completion of a Bus Request operation,
the CPU checks the status of the WMI flip flop. If set,
it executes the NMI interrupt routine as indicated in
Figure 2. If the NMI flip flop is not set, the CPU
checks the status of the maskable interrupt flip flop
(INT F/F). 1If set, it executes any one of the three
interrupt modes as indicated in Figure 3. If the INT
F/F is reset, the CPU returns to main line program
processing.

LAST

NO STATE OF

MACHINE
CYCLE

BUSRQ

SET BUSRQ F/F

INSTRUCTION

SET NMI F/F |-

NO

SET INT. F/F

\

BUSRQ =0

BUSRQ =1

RESET
BUSRQ F/F

Figure 1. Z80 Flow Diagram: Interrupt Sequence

NON
MASKABLE
INTERRUPT

MASKABLE
INTERRUPT
MODE

Z80 NON-MASKABLE INTERRUPT

This negative edge triggered interrupt cannot be
disabled under program control and will be accepted at
any time by the CPU to be honored at the completion of
the current instruction (if Bus Request not pending).

If an NMI occurs during a BUSRQ true condition, it will
be latched and processed after BUSRQ goes false. If an
NMI occurs during a reset true condition, the CPU will
execute one mainline program step after reset is taken
away and then process the NMI.

The non-maskable interrupt (NMI) has priority over any
maskable interrupt and generates an automatic restart to
location 0066H. It is normally dedicated to functions
requiring a rapid response (such as a power failure) or
is used with peripherals that must be serviced
immediately.

When an NMI is accepted, the flip flop used to enable
maskable interrupts (IFFl) is reset to prevent
interrupts during the NMI service routine. However, the
state of IFFl just prior to the NMI is saved in the
temporary storage flip flop IFF2. (IFF2 can be copied
into the parity flag by loading the accumulator with
either the I or R register (LD A,I or LD A,R).) Figure 4
details the NMI request operation. The CPU response to
an NMI is similar to a normal memory read operation
except that the data bus is ignored on the next Ml
cycle. The CPU automatically pushes the Program Counter
(PC) onto the external stack in the following cycle. At
the completion of the NMI routine, the execution of a
Return from Non Maskable Interrupt (RETN) will copy the
contents of IFF2 back into IFF1l thus automatically
restoring maskable interrupt enable status. (See
Figure 2.)

PC — STACK
IFF1 > IFF2
0 — IFF1

JUMP TO 0066H

RETN

IFF2 — IFF1
STACK — PC

Figure 2. Non-maskable Interrupt Sequence

J3d «-MIVisS
1134

(SLdNYYILNI 319VYN3) 13

INILNOY JDIAHIS
L1dNYYILINI LHVILS
‘NOILVI01

M3N Ol dWNNr

378Vl HO1D3A
WO44d ss3daav
ONILHVLS 139

[

HOLI3A + D34I
+§S34Aav I1avL
HOLI03A WHO4

|

MJVLS «0d

H01J03A av3id

|

0 =241 1441
‘S1dNYHYILNI 378VSIQ

¢ 3A0ONW

saouanbag 1dnusaluy ajqexsepy g 84nbiy

9d « MIVILS
ATINO 134
1SH HO _
11vO HO4 .mk_:mmmp_u_ 379vN3)
NOLLONYLSNI 31NIIXI
| ~{ON
MIVLS «— Od
| 1S4 HO 1TVD
S3A
(AYVNOILVLS Od HLIM
av3y ‘W3 TYWHON)
U v_oﬁm 3JLAS 1X3IN Gv3d
13

(SLdNYYILNI 378VN3) 13

NOILONYLSNI
- HOd4 q34in034
S31A8 JHON

H8E00 OL dWNF

I (MO DHOI ‘L)

NOILONYLSNI 40

NOVLS ~— 2d 31A8 1S1L Qv3Y
0=2441 1441 0=2441"1441
S1dNYHILNI 318VSIa SLdNYHILNI 378VSIA

I 3AONW 0 3AOW

uonesadQ 1senbay 1dnisaiuj a|qexsew-uop p ainbiy

—C —C Y- Lq-0g
Tod Hog

| L HS4H
H 'IIB
I _ ay

—) S | — | I | | O3HUW
I -1 W

X o X T35 EER X SLy—Oy
M1 AN

z_s_mZowIV_ _Al
M MmO rhrrmhnnrrmhrnr—oe
€ _ 4} _ Ly € _N._. _ Ly 141 _ € _) _ by

- -3 1S 1 1SV
Alm_._umwv“_r_oﬁmlvtm_._owhw : 1S o |«—379A9 LW a3HONDI—> 319AD W 1SV

MASKABLE INTERRUPT

The maskable interrupt (INT) can be selectively enabled
or disabled by the programmer. The enable interrupt
instruction (EI) will set both IFF1 and IFF2 to a logic
‘one' allowing recognition of any maskable interrupt at
the completion of the instruction following the EI
instruction. The Disable Interrupt Instruction (DI)
will reset both IFF1l and IFF2 to a logic 'zero' and
interrupts will not be recognized. Note that during the
execution of both EI and DI, maskable interrupts will be
disabled.

MASKABLE INTERRUPT MODE 0

In the maskable interrupt mode 0 the interrupting device
places an instruction on the data bus for execution by
the 280-CPU (identical to the 8080A interrupt response
mode). The instruction is normally a Restart (RST)
instruction since this is an efficient one byte call to
any one of eight subroutines located in the first 64
bytes of memory. (Each subroutine is 8 bytes long.)
However, any instruction may be given to the Z80-CPU.
The first byte of a multi-byte instruction is read
during the interrupt acknowledge cycle. Subsequent
bytes are read in by a normal memory read sequence (the
PC, however, remains at its pre-interrupt state and the
user must insure that memory will not respond to these
read sequences). (See Figure 3.)

When the interrupt is recognized, further interrupts are
automatically disabled, (IFF1 and IFF2=0). Any time
after the interrupt sequence begins an EI instruction
can be executed so that this subroutine itself can be
interrupted. This process may continue to any level as
long as all pertinent data are saved and restored.

A CPU reset will automatically set interrupt mode 0.

MASKABLE INTERRUPT MODE 1

This maskable mode allows peripherals of minimal
complexity interrupt access. In this respect, it 1s
similar to the NMI interrupt except that the CPU does an
automatic CALL to location 0038H instead of 0066H. As
in the NMI, the CPU automatically pushes the PC onto the
Stack (See Figure 3). Note that when doing programmed
I/0 the CPU will ignore any data put onto the data bus
during the interrupt acknowledge cycle.

MASKABLE INTERRUPT MODE 2 (VECTORED INTERRUPTS)

The Z80-CPU supports an interrupt vectoring structure
that allows the peripheral device to identify the
starting location of the interrupt service routine.

Mode 2 is the most powerful of the three maskable
interrupt modes allowing an indirect call to any memory
location by a single 8 bit vector supplied from the
peripheral. 1In this mode the peripheral generating the
interrupt places the vector on the data bus in response
to an interrupt acknowledge. This vector then becomes
the least significant 8 bits of the indirect pointer
while the I register in the CPU provides the most
significant 8 bits. This address in turn points to an
address in a vector table which is the starting address
of the interrupt routine. Interrupt processing thus
starts at an arbitrary 16 bit address allowing any
location in memory to be the start of the service
routine. Notice that since the vector is used to
identify two adjacent bytes to form a 16 bit address,
only 7 bits are required for the vector and the least
significant bit is zero. Figure 5 shows the sequence of
events for processing vectored interrupts.

JUMP TABLE

Z80-CPU MEMORY
@ — |] LOW ORDER
{’ HIGH ORDER
PC
158 70
IREG @
! ®
*| INTERRUPT
SERVICE
ROUTINE
@ PERIPHERAL
INTERRUPT VECTOR
Figure 5 Vector Processing Sequence
+5V 1EI 1EO {EI
CTC PI1O

INT

IEO

Figure 6 CTC/PIO Priority Chain

10

INTERRUPT PRIORITY

Real time overhead in handling multi-level interrupts is
significantly reduced in Z80 systems. Without requiring
additional logic between the 280 CPU and peri§hera1
devices the interrupt mechanism is able to select the
prioritized device from among several requesting
simultaneous service.

Priority is set by the location of the device in a daisy
chain configuration with each device tied to the INT
line. Two lines, Interrupt Enable In (IEI) and Interrupt
Enable Out (IEO) are provided in each peripheral.

Figure 6 shows the Z80-CTC and Z80-PIO peripherals
connected in a typical configuration. The IEI of the
CTC is tied to +5 volts to indicate that is has the
highest priority. The PIO is the second highest
priority device with its IEI tied to the IEO of the CTC.
The priority string insures that a device with a higher
priority will be serviced before a lower priority device
when two or more INT requests occur at the same time.

For a device to have priority, its IEI must be high.
When a device needs service, it will prevent downstream
devices from interrupting by pulling low on its IEO
line. The next device in the chain sensing a low at the
IEI input will pass this 'priority signal' on to the
next device by pulling low on its IEO line. The IEO
line, therefore, of any given peripheral will satisfy
the following relationship:

IEO=1EI.HELP

Where HELP is an internal peripheral signal indicating
that the device needs service.

For example, if the CTC in Figure 6 needs service, it

will generate an interrupt. It pulls low on the IEO
line blocklng any interrupts from downstream devices.

When it receives an interrupt acknowledge (M1 low and

gﬁRﬁ low), it places the service vector address on the
us.

Before the fall of M1 a device is free to pull low on
the INT line and contend for interrupt priority.
However, during the interrupt acknowledge time frame,
280 peripherals will be inhibited from changing their
interrupt request status. This time, between the fall

11

of M1 and the fall of TORQ, is used to resolve interrupt
priority. (See Figure 10.) It should also be pointed
out that the priority structure works for any of the
maskable interrupt modes since an interrupt acknowledge
cycle is common to each.

12

pajqeu3 sadnugiu| yum buiwi g idnussiu) Qi1d/010 £ 84nbiy

d13H-131=031 310N

1134
- - ss3yaav ssayaav
ay a3 av a3 HOL193A 919 ¥OL193A Old
— — ——— —— —— —_—— —— sng
/] — - - —_ —_— —— Viva
A/_ L M ﬁ a 1 55 45 ay
_F b % / 5 4 (01d)03]
m\ 4 / 35— 45 1 (01d)d13H
i % J 4 V " & (O1d)3
£ % \ o S SN (0L2)031
. = n 1 . (919)d13H
<5 1] - I T 1 oHol
1 1 1 B _ / sTT L —
) |
‘5 <5 | | S | L NI
Q3NNILNOD _ INILNOY _ aNILNOY
30IAH3SOld ™~

INILNOY 3D1AH3S OId _ 3OIAH3S J1D _

13

(([
pajgesiq sidnuaiu| yum Bujwi) 1dnaisiu| Oid/D1D 8 a4nbi4
ss3daav ss3yaav
HOL23A 21D av a3 HOL123A OId
—_— —— — - — —— sng
||||| - — — — — Viva
/ g1 s ay
x 5 (01d)031
g 5 >M (O1d)d13H
| N | i N (o131
| I o A =N (019)031
—5 \ (0L0)d13H
o n o3%[0]]
I L 1 1 S / — LW
3aNILNOY _ aNILnoy _
30IAH3IS 010~ _1 301AH3S OId _

14

INTERRUPT NESTING

By enabling interrupts during a particular device
service routine, a priority structure is established
which allows higher priority devices to interrupt the
current service routine. This nesting mechanism will
enable a high speed device interrupt access and to
temporarily suspend interrupt service of a slower
device. An automatic return to the slower speed device
service routine is performed at the completion of the
higher speed device service routine.

»

To illustrate the nesting mechanism, a typical interrupt
processing routine is detailed on the configuration in
Figure 6 and the timing relationships are shown in
Figures 7 and 8.

The PIO requests interrupt service by setting its HELP
logic and pulling the INT and its IEO line low.
Assuming interrupts have been enabled, the 2Z80-CPU
finishes the current instruction and responds with an
interrupt acknowledge (M1 and TORQ low). The interrupt
vector is read and the contents of the PC are stored in
the external stack. Interrupts are automatically
disabled (IFFl and IFF2=0), whenever an interrupt is
acknowledged and must be subsequently re-enabled (EI) to
permit detection and handling of future higher priority
interrupts.

While in the service routine for the PIO (with
interrupts having been enabled (IFFl=1l)), the CTC
generates an interrupt (INT, HELP and IEO all go low).
The IEI of the PIO is now low blocking any downstream
devices. The Z80-CPU finishes the current instruction of
the PIO service routine, responds with an interrupt
acknowledge and reads in the interrupt vector. The
contents of the PC are stored in the external stack and
IFF1 and IFF2 are once again reset, disabling
interrupts. The external stack now looks like:

15

MEMORY

X
STACK POINTER
b PC (PIO SERVICE ROUTINE)
SP+1
4
SP+2
L PC (MAIN LINE PROGRAM)
SP+3
P

At the completion of the CTC service routine, the RETI
(Return from interrupt) instruction is used to restore
the contents of the Program Counter (PC) to that of the
PIO service routine and to reset the CTC HELP logic.
The CTC IEO line goes high and the PIO IEI now being
high indicates that the PIO can finish its service
routine.

Note that, as indicated previously, prior to the RETI
instruction, an EI instruction can be executed to enable
interrupts for the remaining segment of the PIO service
routine and EI will not take effect until after the RETI
has been executed.

The PIO service routine is completed and another RETI
instruction (ED 4D) resets the HELP logic and the IEO
line. The stack is popped restoring the PC to the main
line program.

A variation to the above example results when interrupts
are disabled during the PIO service routine. Now if the
CTC needs service (HELP logic low with PIO low), the INT
line will be pulled low but the CPU will not respond
(IFF1l=0). However, when an RETI is issued for the PIO
routine, the CTC HELP logic must not be reset.
Therefore, the CTC will allow its IEO line to go high
for one M1 cycle during the RETI instruction (see Figure
8.) In other words, if an interrupt acknowledge is not
given to a device requesting service, its IEO line will
be forced high for one Ml cycle after decoding ED (first
byte of RETI) to allow down stream devices to decode
RETI. For systems with more than four peripherals, the
propagation delay of this signal rippling from the

16

highest priority device with a pending interrupt to the
lowest priority device needing to be reset may exceed
the time interval between the decoding of ED and the
decodlng of 4D. The downstream device could potentially
miss the RETI instruction. To prevent this, the IEO
line could be inhibited from going low (with a pending
interrupt) until the beginning of the interrupt
acknowledge cycle. (See the section on Interrupt
Acknowledge and Daisy Chain Propagation.) Figure 9
identifies the transition of the IEI and IEO lines
within the RETI instruction and the relative propagatlon
from IEI to IEO.

17

A

- RETI

- M1 o M2 »>

T3 Tq

Mpligligigigigigigigigigigigigin

1EO goes high IEl must be IEO goes high
for pending high on de- for a device
interrupt de- vice that is reset

vices to be reset

-\ /

i

N |

i

| t

1 ! L

v |

! |
IEO i \ ! /

' I

| 4 |

| |

| i

]
—1pL (10)— le——1tpH(10)—>!
4 MHz PART tDL(10) tDH(10)
Z80-PIO 130 ns max 160 ns max
Z80-CTC 130 ns max 160 ns max
Z80-DMA 130 ns max 160 ns max
Z80-S10 100 ns max 120 ns max
FIGURE 9

IEI/IEO TIMING WITHIN RET! INSTRUCTION
AND IEI TO IEO PROPAGATION DELAY

18

INTERRUPT OVERHEAD

The time and bytes required in saving and restoring CPU
working registers and status conditions is an important
consideration during interrupt processing. The 280 with
a dual register bank 1s uniquely designed to minimize
status and data saving operations because for many
interrupt conditions the contents of the CPU working
registers can be simply switched from one register bank
to another. Two 1 byte instructions exchange the
contents of the entire working register bank:

EXX EXCHANGE THE CONTENTS OF BC, DE, HL WITH
CONTENTS OF BC', DE', HL' RESPECTIVELY

EX AF,AF' EXCHANGE THE CONTENTS OF AF AND AF'

After servicing a device, the service routine restores
the pre-interrupt status of the CPU, enables interrupts
and returns control to the interrupted program. The
enable interrupt (EI) instruction however has no effect
on IFFl until the next instruction has begun. Thus,
after the EI instruction, the CPU always executes one
more instruction (usually a return instruction) before
another interrupt can start.

The Z80 also utilizes an external memory pushdown stack
for the storage of all pertinent data and addresses
during interrupt processing. The stack is essentially a
last in first out buffer with the top of the stack as
the entry point. The address of this entry is stored in
the 16 bit Stack Pointer register (SP). Storage and
retrieval from the stack is performed using the 280 Push
and POP instructions. The following instructions store
the contents of the working registers and status onto
the stack:

PUSH BC
PUSH DE
PUSH HL
PUSH AF
PUSH IX
PUSH IY

19

The following instructions restore the registers and
status:

POP IY
POP IX
POP AF
POP HL

POP DE
POP BC

During an NMI and mode 1 and 2 maskable interrupts, the
Program Counter is automatically pushed onto the stack.
An interrupt routine is ended with the return from
interrupt instruction (RETN (non maskable) and RETI
(maskable)) which automatically pops the stack,
restoring the PC. Notice that for nesting routines, the
correct return address will always be at the current top
of the stack.

INTERRUPT ACKNOWLEDGE AND DAISY CHAIN PROPAGATION

The INT line is sampled at the beginning of the last T
state of the last M cycle of an instruction. Upon
acceptance (If IFFl=1 and interrupts are enabled) an
interrupt acknowledge will be performed. This consists
of a special Ml cycle with an RQ signal instead of the
normal memory request signal (MREQ). At the leading
edge of Ml and before the leading edge of TORQ (see
Figure 11) peripherals are free to contend for priority.

The CPU will automatically insert one more wait state
(for a total of two) to allow additional ripple time for
this priority determination. Up to four 280 peripheral
devices can be serviced without added logic.

When designing systems with more than four I/O devices,
the USER can either extend interrupt acknowledge cycle
time or reduce priority ripple time.

A possible technique for extending interrupt acknowledge
time is to gate IORQ to the peripheral devices. Figure
10 details the relatively simple logic required. When
MI goes low the WAIT line is activated and IORQ' (to the
peripherals) is maintained high until a time out
determined by the LS191 synchronous counter. This
counter (strapped to count up) can be user-programmed to
add from none up to 5 wait states. Figure 10 shows the
counter strapped to add one wait state, which requires
that it be clocked four times (counter clocks on the
falling edge of the T clock after Ml goes low, see
Figure 10). When the D output goes high, the wait line
is deactivated and IORQ' goes true (low). (It should be
pointed out, however, that while in the wait state, the
CPU will not recognize a non-maskable interrupt.)

If no additional wait states are necessary, counter
inputs A, B and C are tied high and the D input is tied
to ground. The counter will now set the D output high
on the next clock edge after MI goes low. resetting the D
flip flop and thus allowing a normal TIORQ.

To reduce ripple time, a configuration as detailed in
Figure 11 can be used. The 74S182 is a look-ahead carry
generator that can be used with a group of up to 4
peripherals. This logic anticipates an IEO low
condition at any device and generates a look-ahead
signal to the propagate output. The logic can be

21

cascaded to allow additional peripherals and results in
a 25 ns maximum ripple for any IEO to P out. Note,
however, that this configuration only hinders the RETI
ripple function. This ripple propagation occurs when
the chain is re-established after a higher priority
device has its service routine completed and allows its
IEO line to go high. The look ahead logic now adds to
this propagation delay.

For systems with more than four peripheral devices, it
is a good design practice to inhibit IEO from going low
until the beginning of the interrupt acknowledge cycle.
This eliminates the RETI ripple propagation with
interrupts disabled, as previously discussed. Figure 13
incorporates a D flip-flop between the two banks of
peripherals as a possible implementation of this
technique. This flip-flop is clocked when a valid
interrupt acknowledge cycle is detected. This involves
detection of Ml without an RD signal. RD , however,
does not go true until after the fall of the clock edge
after M1 goes true. 1If the next clock edge is used to
indicate a valid cycle, approximately one-third of the
cycle has already elapsed. This leaves about 400ns
which does not allow sufficient propagation delay for
systems with more than three peripherals.

{TO
PERIPHERAL)
WAIT
7432 Jo——m7mM8M—
(TO CPU)
74LS04
M1 LOAD DN/UP G
741504
74L8191 Qp
d>‘o>—%- A B C D
74LS04 L ' _{_
5V — AANAN———

Figure10. Extending Interrupt Acknowledge Time with Wait States

.

Bujwn| abpajmoudioy 1dnusiu] || aunbi4
(ZHW ¥ ® 0£8)
j«— 31viS 1IVM TVYNOILIQQY —>»
"03SU NI SHIFGWNN 11V 310N INO HLIM FWIL IDAITMONIOV
«(ZHW ¥ ® SZS) AWIL___
3DA3TMONIIV TVYIWHON
S I Dl e O O M 1) /'
NnwoL—]| |- —] Alm-z_s_o
NINOL—>{ |e—
- } sna viva
NINO —| |=— —| |=— XV S8
NIN 0§ ——» -—
—d L JOHOI
XVIN NNFIV_ - —p! |a— XVW00L
—_—l L DHO!
XV 00L —>| [=— XV 00L —»| =
X 5d_ XC Sly—Oy
XYW o=|v_ -
—I.I..Ilulu :,—II._.Z_
| | I ;Ful.._ j E— | | I | | I | L1 | S P
€ M M r4 L
_ L i *M. _ ./P _ L 1 NOILONHISNI .
1 40 IT10AD W 1SV
LIVM H3SN 1IVM JILVYNOLNY 40 3LVIS L 1SY1

S

PIO P10 PIO PIO
1EI iIEO — |El iIEO 1EI IEO .l._ |EIl IEO
4[|
74S00 74504 74504 74504
1o 0:+x _ud n=+< 1N. ntz
745182 P5 jo-
FROM P 1 —¢ Cn G, Gy G4 Gy
OF PREVIOUS SECTION
(1ST SECTION TIED 74504
TO +5V) P TO
+ ouT
5)\/\(NEXT STAGE

Figure 12. Reducing Ripple Time Using Look-ahead Logic

9C

+5 1 2 3 4 5 6 7 8
—J IEI —
1EOQ —

2WAIT
STATES
LS20 PR ADDED

LS04 D Q
— ..~r UNDER SERVICE
RD —
= cK
— CLR -
_ S Ls74 T, =250 ns ﬁ k

— G D/U _ AAA
M1 VO QlLoaD N +5 T T2 Tw T

i- Tw Tw T3
Ls191
® VO cK ap COUNT 191 Q OUTPUT ® I_ t _I_ _'
A B [o4 D
~ _ D C B A iNT 4 \ 5
+5 _lJ 0 O 1 1
1 01 0 o0 -
- 2 0 1 0 1 M1
3 0 1 1 0
4 0 1 1 1 N
5 1. 0 0 O IORQ /)//

N

iORO
(FROM CPU) |

TCLL

IORQ' WAIT /
(TO PERIPHERAL) / ’ \
UNDER SER /V/_

WAIT
(TO CPUL)
750 ns typ——»

FIGURE 13

CONFIGURATION FOR EIGHT Z80 PERIPHERALS
INCORPORATING WAIT STATE, LOOK AHEAD AND IEO INHIBIT LOGIC

. . G

" Zilog

Application Note: The Z80 Family Program Interrupt Structure, May 1978.

The logic in Fig 13, page 26 of the Interrupt AP Note has several flaws
that need to be considered in a practical app11cat1on The LS191 enable
input, to which RD is connected, should change o when the clock input is
high. However, if a Read cycle is in progress, ﬁﬁyw111 go active during
the Tow transition of the clock. Also, when Ml goes false at the end of

a Read cycle, the Qa output of the 191 is cleared, erroneously clocking-
the LS74 flip flop.

The following schematic using the LS161 synchronous counter represents the
necessary logic for configuring a system with eight peripherals.. Note,
that no additional IC's are required and that the timing remains the same.

CONFIGURATION FOR EIGHT Z80 PERIPHERALS
INCORPORATING WAIT STATE, LOOK AHEAD AND IEQ INHIBIT LOGIC

The approach taken in Figure 13 is to use a combination
of look-ahead logic and insertion of wait states to
configure a system of eight Z80 peripherals. The LS191
counter performs a dual function:

1. It clocks the D flip-flop to indicate the valid
recognition of an interrupt acknowledge cycle. The
counter is clocked twice before the B output goes high.
During this time, the counter can be disabled if a RD
is detected indicating that the current cycle is an op
code fetch cycle.

2. It allows insertion of wait states. The
configuration in Figure 13 is set up for two additional
wait states and the counter is clocked five times before
the D output goes high to inhibit further wait states
and also to send IORQ true.

It should be noted, however, that the use of the logic
in Figure 13 requires certain constraints. For proper
chain operation, an EI instruction must be executed just
before the RETI instruction to prevent the possibility
of a higher priority device with a pending interrupt
from blocking the RETI to a lower priority device. For
example, in Figure 13, suppose device No. 5 interrupts
and is granted priority. During the service routine for
No. 5 with interrupts enabled, device No. 2 interrupts
and is recognized, temporarily suspending service of No.
5. While in the service routine for No. 2, device No. 3
needs service. However, No. 3 does not have priority and
its interrupt remains pending. If No. 2 finishes its
routine without issuing an EI, then with No. 3
preventing the reseting of the D flop, No. 5 can never
see its RETI.

HALT EXIT USING INTERRUPTS

Whenever a software halt instruction is recognized by
the CPU it will enter the Halt state by executing NOP's
until an interrupt is received. Each NOP consists of
one M1 cycle with_four T states. The CPU will sample
the state of the NMI and INT line on the rising edge of
each T4 clock (see Figure 14). When an interrupt exists
on either line the following cycle will be either a
memory read operation (NMI) or an interrupt acknowledge
(INT). Figure 14 shows a typical maskable interrupt
causing the CPU to exit the halt state.

I/0 CONTROLLER DESIGN TECHNIQUES

This section describes device interface design
techniquess for compatibility with the vectored
interrupt structure of the Z80 Family. It adds emphasis
to the previous discussion and can be used to supply
useful guidelines for controller design.

Figure 15 represents a conceptual configuration. When
the device needs service, it will set the interrupt
pending flip flop A (FFA)_pull IEO low (via 7408 AND
gate) and pull INT low. INT should stay low until
acknowledged by the CPU. This will insure recognition
and service of the device in a priority structure
system.

An interrupt acknowledge (INTA) will reset FFA and set
interrupt under service flip flop B (FFB) (IEO is
maintained low via FFB). The internal peripheral signal
(HELP) discussed in previous sections can be equated to
FFA and FFB as follows:

HELP = FFA + FFB

INTA also enables the vector address to be placed on the
data bus if IEI is high and FFB is set.

N

1dnuaiu| ajqedsely Yy1m a1e1s Jeq ux3 “p| ainbig

— I oHOI
&
[I 1 [1 m
' |- - - - Tiw
[1VH
Mg LI I LI I e ri rerrr $
TR BTN (TR T (N T O 7 N -TH (7T N PR I Y IO T R T I Y vy
sawvisuvm S/
Q3LU3SNI NdD LW (dON) LW — (dON) IW———»

8
DATA BUS —/—

Figure 15. Z80: Interrupt Control Logic

30

> |

ETI

T

A 4
DATA BUS

7404
___Do———«
IEI oc
7401
7427
—-‘
+sv —D @ Q —+—0®a — IEO
INTR. INTR.
NDER
PENDING SléRVICE
NEED _
SERVICE C R CRra |
— |
“ED"” 7408
7408 7408
IEI
()
RESET $ - DECODED R
IORQ —1—90
o 7427 Do—i 7410
M1 INTA INTA
7419
— 7432 —
RD - - MRD -~ B
p©o p®oa ED"
“ED" “ED”
7408 DECODER DECODER
sdc ral $c r
IlEDII %
i c
D" — g
256x4
ROM <
| : 9
p® D @a — =
4D Q
s :
DECODER DECODERW
L Jc R Q ﬁ CR
T RESET T
\)

N

The multi-byte instruction, RETI, is used to reset FFB
and must be distinguished as a sequence of ED and 4D.
Illegal recognition of ED and/or 4D with other op codes
will cause improper resetting of FFB. For example, the
following two instructions could cause this improper
resetting:

SET 5,L CB
ED

LD C,L 4D

In the preceding sequence, an ED followed by a 4D is not
an RETI instruction. The interrupt controller,
therefore, must recognize the CB ED combination and
prevent resetting of FFB. In Figure 13 FFE will be set
blocking the AND gate if a CB is detected. Now if a ED
follows, it is not allowed to be stored in FFC.

For an RETI instruction, the first byte (ED) is clocked
into FFC at M1 and RD time. The second byte (4D) is
clocked into FFG and ED is clocked into FFD for decoding
by the 3 input NAND gate.

If a device needs service (FFA set) but has not received
an INTA, FFC will be set when the first byte of an RETI
is recognized. _With FFC set, IEO will be forced high
until the next M1 cycle allowing downstream devices to
decode RETI.

31 (:}eréﬁr— ;ng%i)

